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A General Method for the Computation of Cartesian Coordinates

And Partial Derivatives of the Two-Body Problem

A general solution for cartesian coordinates and partial derivatives
of the two-body problem has been programmed as a double-precision
Fortran 4 program for the IBM 7094. The compact subroutine provides
an accurate and efficient computation of coordinates and partial derivatives
for all cases of two-body motion. A derivation of all equations used by
the subroutine is given for those interested in the formulation. A de-
scription of the subroutine is also given for those interested in the
details of the computation.

W.H. Goodyear

IBM Federal Systems Division
P.O. Box 67

Greenbelt, Maryland
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INTRODUCTION

The classical two-body problem may be reduced to the solution
of the differential equations

ar -

dt -

e ¥

a - ~HT3
r

where g is a known constant and

VEe T

in the magmtude of T. A solution of the two-body problem gives the
position vector r and velocity vector r at any time t in terms of the
position vector T and velocity vector r at a reference time t_. Many
practical apphcatmns also require the partial derivatives of the com-
ponents x, y, z of r and x, Y, 2z of T with respect to the components
X, vy, z of r and x_, y ) z of T .. Classical formulas for the coordi-

nates x, y, z, x, v, gand part1a1 der1vat1ves a(x,y,z,i,i, 2)

(%Y 2 Xgi¥ g0 £)
have the disadvantage that several different formulations must be avail-
able and one must be selected depending on the particular values of Xq
YO’ ZO, xo, yo z0 and u

General formulas are available for computing the coordinates X,¥,2,

,¥,2 and partial derivatives . e . as well as
Y P 9 (x,v, z, x,j.Z)

a » H] 1] 3 Y ’ 7
(%0 Yo 20> %92 T Zg)

{x,v,2,%,v,z)

m for all possible values of x 0’ Yo' 2 ,x ,y t and u.
The formulas have been programmed as a doub? prec1s1on Eoorgra.n 4 sub-
routine for the IBM 7094. The subroutine is advantageous in that it offers
an efficient and compact program for the accurate computation of coordinates
and partial derivatives for all possible cases of two-body motion. The
purpose of this report is to give a derivation of all equations used by the
subroutine and a detailed description of the computations. For those who

are not interested in these details but only in using the subroutine, the
inputs andoutputs are described in Paragraph 4,1 below and a Fortran 4
listing is given in Paragraph 4, 8.

The solution for the coordinates is derived in Section 1 by defining a
new independent variable ¢ by the differential equation
dy _1_

dt
r vii



which Sundman applied to a theoretical investigation of the three-body
problem. The solution is a modification of that given originally by
Stumpff and differs primarily in that it is valid for all values of the
constant 4 . The relation of the general solution for coordinates to the
classical formulas for elliptic two-body motion is also considered. It
is shown thaty is a generalization of the eccentric anomaly and that
the relation between t and ¥ is a generalization of Kepler's equation,

The partial derivatives are obtained in Section 2 by differentiating
the solution for coordinates and manipulating the results algebraically.
The approach is an extension of Sconzo's derivatives which are based
on those of Kihnert. Although the derivation is tedious and involved,
the final derivatives are compact and general. Some formulas used in
the derivation of the coordinates and partial derivatives are discussed in
Section 3 with formulas that are used for computation. A detailed
description of the double-precision Fortran 4 subroutine for the IBM 7094
is given in Section 4. The description should be sufficient for those
wishing to make modifications or additions to the subroutine.

viii



1. THE SOLUTION FOR THE COORDINATES

1.1 THE EQUATIONS OF MOTION OF THE TWO-BODY PROBLEM

The equations of motion of the two-body problem are

r. - r
5 1 2
mlrl = -Cuml m2 ————r 3
12
r. - ¢
=S 2 1
m, r, = - Gmm, 3
12
where
_ 1 - — - -
12 \/(rl - T e r) - 1)

is the distance between the two bodies and G is the universal

constant of gravitation. At the time t the body of mass m has the in-
T,

1 -
the body of mass m_ has the inertial cartesian position vector r,

ertial cartesian position vector ?1 and velocity vector and

*
2
with a force of magnitude G m

and velocity vector Each body is attracted toward the other

2 .
lmz/r12 where the acceleratlori‘ of

m1 toward m2 is ?l and the acceleration of m2 toward m1 is ?2'

Initial conditions are specified by the position T and velocity

.
—

,0

r1,0 of ml and the position 1?2’0

given reference time t_.

0

A closed-form solution of the differential equations above gives

T of m_ at a

and velocity 2 0 »

rl, rl.and rz, r2 at any time t in terms of rl,O’ rl,O and
rZ,O’ r2,0 at time tO as well as the constants ml, m2 and G. Such

a solution is extremely important. for many practical applications

in astronomy and astronautics. However, it is convenient to trans-
—

form the differential equations by defining the position R of the

center of mass and the position T of m, relative to m, by



m +m_r
i M e &
1 2
—"=—b —
r-rz—rl
sothat. mf:’+m'.f
f{: 1 1 2 2
ml+m
5> K 0N
r—rz-rl

give the velocity R of the center of mass and the velocity T of

m_ relative to m,. Thus the values of the four quantities above

at the reference time tO are

z . 17,0 Ym0
0 m1 + m2
- my T ot ™0
0 m1 + m2

and
0% f2,07 "1,0

H
o

o 2,07 "1,

Time differentiation of E and ;above and substitution from the
differential equations show that

=0

== G(m,+m )’r;/r3

- 1 2

Ryt i

where
+1= —
r = r s T

- e - -
An integration of these differential equations gives R, R and r, r

at any time t. Simultaneous solution of the defining equations for

- -
R and r shows that

—> mz —
1 E R T T,
i W
.= R + 1 T
A +



and time differentiation gives

T : m, :
rl = T m.,+m
1 2

S R ™ L

r, = + ——— 7

2 ml + n’l2
so that Fl' 1'-"1 and _172, _172 may always be determined from R, R
and _1", r

Thus the integration of the differential equations for 'r'l and i-"z

has been transformed to an integration of differential equations for

R and T. Integration of the differential equation

R=o0
for R shows that
R = R
0
and
R = EO+R (t-t )

so that the center of mass moves along a stralght line at constant
velocity, However, the inertial coordinates RO R and thus R R
at any time t are usually unknown or the center of mass is chosen
as the origin of inertial coordinates. In any case, the two-body

problem reduces to the solution of the differential equation

i": - u?/r3
where
7=
r=VT-.T

is the magnitude of T and

M= G(m1+m2)

is a postive constant. This differential equation is actually ob-

tained for all inverse-square Newtonian forces between two bodies,



but the constant M may be different, For example, the same
differential equation describes the electrostatic repulsion of
two electrons but py is then negative and is a more complicated

function of the electronic mass and charge.



1.2 DERIVATIVES WITH RESPECT TO A NEW

VARIABLE
The differential equation
pAN - 3
r = — f r/r

where

+vV > S
r = r ¢« 1

is conveniently integrated by defining a new independent variable

y

by the differential equation of the Sundman transformation,

l!;= 1/r

where ¥ is zero when t is t_.

0 Using a prime to denote differentiation
with respect to ¢,

t' = 1/¢ = 1/(1/r)

=T

from the properties of derivatives.

The chain rule for differentiation
shows that

.
>y

/
r =

S
rt
2

= r

r,

The method of solution described below requires determination

of the successive derivatives of t and T with respect to ¥

The
second derivative of t is
1 1 -
- T -
" =r’ = = (T2 2r: 7' = Z.r r
2 r
— S
= r r

where the quantity
c=T-7

is defined so that

. - - .,
The second derivative of r is

ottt ’

=T r+ 7% r’



but

_.15' = ?t': (- u?/r?’) r
= - i"’/r2

so that

?‘: - y—lt/r + 0-;:’.
The third derivative of t is

N R S R

- + T(— prir)
L

However, the quantity

a:r'?-—z p,/r

is defined to obtain

t” =" = o= r(-.r.-?)—Zu + u = r(f-7F -2 p/r) +
= ar + u.
The third derivative of T is then
-;/’ = - u ;’/r + u ;’r’/r2+ 0',;.."4' o_.;’
= - ?+p? 0/r2+(ar+p)?—o.p?/r2

= ar T.
The quanity o has the important property that
o= 27 T 42 prir’

- - 2
2r ~(—ur/r2)+ 2 p 0 fr

=—2u0’/r2+2p o’/rZ

=0
so that @ is constant for every value of ¥ as well as t. This
property gives all the derivatives of t and T as simple functions

—r —
of the first two derivatives t', t" and r', r". From the results
above,
t" = ot + pu

™ = a T



so that

The

tm = o M
Tim = g T
tm - gt - o ( o t! +u )

rum o= Tm - o («a 1‘.1)
2
= r
AL 2 AL
_;IHIH - o 2.;"
grom = o L aZ (@t +u)
3 2
= o t' + o u
-r.umn = az ';’m = az (o ;ﬁ)
3 -
= a '
etc.

t' = r
t" = o
t"" = ar +tu
t= o o
t"=- o 2r +au
th= 2 o
gt = a3 r + az U
gmmn - ado
etc,



and that

i =r ¥

g = - pu T/t + o T

™ = a(r 3

T oza (- p T/r+ oF)

o= (T

P —z0f (L GTr o+ o

T = o (r )

T a3 (- 4 T/r + 0 _r’)
etc.

where
2 R
@ =r_ +1r -2 /r
o o 1%
since @’is zero and o is invariant for all values of ¥ as well as t.



1.3 SERIES SOLUTION IN THE NEW VARIABLE

The Taylor's series for t in terms of ¥ is

2 3 4
t=t +t ' ¥+ t" 2: +t ™ ! m L
0 Oll) Ow/ + tg P7/3 + t ” /4
where tO’ to'. to". to"', to"". ..... are the values of t, t', t",
t", t"™, ... when ¢ is zero, i.e. when t is to. But
t ! = r
0 0
t " = O
0 0
t m =
0 o ro +u
t nn = Q g
0 0
- +
to o ro o u
2
t Mmn o- o
0 0
etc.

from the results above where

:-3>‘ .—'> — 2
o r0 rO u/ro.

Thus substitution for to', tO", tO"‘, tO"", ... in the Taylor's
series gives
t=1t + ] + C ¢2/2'
B "o 0 :
3 4
+(ar0+u)¢>/3!+a %0 b /4!
2 5 2 6
+(ar0+au) Y /5! + « % P /6!
+



or, collecting coefficients of ro, 00, and u,

t = to + ro( v+ o« zp3/3! + az ¢»5/5! + (13 ¢7/7! + ...0)

2 2
vo (%20 o wtar s d w761+ o 9881 el
3 2
+p ( 27/3 + 45/5!+ e 4)7/7!+ a3 1,09/9!+....)
gives the value of t corresponding to any particular value of ¥,

Similarly, the Taylor's series for T in terms of y is

T = 'r'o +"r"(;w + 'r’(;’ v2/21 + }'0-" b2/31 4 ’r"o"" Cetians L
where
T = r ?
0 0 0
? " - _ -.f‘
0 wiplrg + oy 3,
2w - R
ro ozro rO
= o - _ o >
To @ (= wrolry+ o5 ¥y)
“1?0mn - a*z ro ';0
T o= az(—u?/r+a:f)
0 00 0 0
etc.
from the results above. Thus substitution for —fb', ?0", ?O'“ .....
in the Taylor's series gives
= - g 1
by r0+r0r0¢ + (- rO/r0+ 0ro) p T2
» 3 - L 4
o ! o (- o 1] 1
+ ry To /30 + ( #ro/r0+ Oro) /4
R AR SN SRS
&
or, collecting coefficients of ?0 and ?0,

10



oo B wZzre e vtar e o wlrers o ¥¥8r 4. E

r
0
r 0wt o ¥/3a 2 yBsrs @ w1 w0 .
+ 7,
v g Wizt s o var e ol e s @ ¥8se

which gives the value of ¥ corresponding to any value of V.
The results above are conveniently summarized by defining the

transcendental functions

1+ «a ¢2/2!+ azz])4/4!+ oz3 ¢6/'6! + ...

5 -
s, = V4o B3t s o W5t a0 BT 4L

s, = zp2/2!+ o zl)4/4! + ozz zp6/6!+ a3 d}8/8!+
5, * 03314 o 9251+ of ¥ 74 @ 0 9ra,

which have the derivatives

0 1
sl' = o
sz' = Sy
537 %
with respect to ¢ . In this notation
t = t0+ rosl+ oosz+ ps3

gives t- for any value of ¥ . Also

r = t!' = rosl' + 0’0 SZ| + I 53'
= ag
roso+ Osl+ usz
and
= ' = ! (o2 ' 4 '= a o +
a r ro 0 + s1 usz r0 s, + Os0 p.sl
= [0 o +
oS * L argt #)s)

11



gives r and O corresponding to any value of v,
It is also convenient to define the functions

f=1 - usz/ro

i

+
87Ty %17 %52

which have the derivatives

f' = - usz'/r0

= - owsy/T

[ I— ' 1
g' = r0 Sy + 0052

However, the equation for t as a function of ¢ shows that

g=t—to—lis3

is an alternate expression for g. Differentiation of this equation
shows that

= ¢ _ 1
g t us3

=T -ps,

is an alternate expression for g'.

In terms of f and g,

T=1(T +g7
" 0T B
gives T corresponding to any value of ¢ . Differentiation of this
equation with respect to ¥ gives
oy s f S 7 >
r =fr + r
o” &%
and differentiation of ® with respect to t gives

—'»z‘->+-—>
r frO g T,

12



where

f=19 = (- p s,/tg) (1/7)

= -z SI/FOI‘)
and
g=8 ¢ =(r - ps,)(l/r)
=1 - usz/r
or

Another form of the equation relating t and ¥ above is obtained
by defining
Y= r(_.r' . :r') - p
which satisfies the identity
y=r (£ T 24 /r)+ p

:al‘+u.
Then
t=t0+rosl+ aosz+ us3
= o a
t0+r0(ll)+ s3)+ 0s2+ us3
= +
t0+r0¢ UOSZ +(O£r0+u)s3
so that

=t + .
t 0 r0 Y + cro s2 + Yo s3
Also, differentiation of this equation gives alternate expressions

for r and o .

13



In addition

- 2 -l - 2/ = - — -, 2 : Z»
o= (T.7) = r'-r+r-r=rr-r+r-(-ur/r):r(—f'r)—u

14



1.4 GENERAL SOLUTION FOR COORDINATES

The formulas above may be used to calculate F, T from given

values of _170, ?0 and u , tO’t' First
To® YT o
o = ->.-1>
ro Yo
a = _.’ c-:’ — 2
Yo' To iz,

are determined. Then the parameter P and its transcendental functions

s, = 1+ a p2rzve of wtar e & WPrers. ...
S, ~ b t ¢3/3!+ az ¢5/5!+ oz3 ¢7/7!+....
s, = 4)2/2! + o zp4/4! + 012 zp6/6! + a3 zp8/8!+ .
Sy = ZP3/3!+ a z,’)5/5!+ az zp7/7!+ a3 ¢9/9g+ ]

are obtained by solving the equation

= + o]
t t0 rosl+ 052+ us3

for ¥ . Then

00 01 2

and

f=1—M52/1‘0 g:(t—to)—us3

f=—psl/(rro) g:l-—psz/r
give the final solution for the coordinates.

r = r0+ g ro

T-i7T + g7

r I'O g 0

These are the equations for coordinates given previously by the

author (1965),

15



The great advantage of these formulas is their complete
generality. They are a modification of equations which were
derived by Karl Stumpff (1947). Stumpff's derivation differs
somewhat from that above and he normalizes his equations for
computational convenience and simplicity. Similar formulas
have been obtained independently by Herrick (1960) and Sperling
(1961), but Stumpff was apparently the first to recognize that a
generalized solution for coordinates of the two-body problem
could be obtained by utilizing new transcendental functions sim-
ilar to sO, Sl’ SZ' s3 above, Stumpiff's work (1947) is given in
his textbook (1959) and is also available in English (1962). The
formulas above differ primarily in that the equations are not
normalized but are left in a form that is continuous through
the trival cases where u or (t - to) is zero, The formulas are
thus equally valid for negative values of K or (t - to).

The transformation from the variable t to the variable P
is often treated as a regularizing transformation since the sol-
ution for T above is continuous through a collision which can
Sccur if ¢4 > 0 and 'i"o is parallel to ?O. For such a collision
T is indeterminate at the origin but I is zero at the origin and
continuous through the collision. Also, r and ¢ equal zero at
the origin and are continuous through the collision. The con-
tinuation of the solution through a collision is of course of
little physical importance. However, it is practically advantageous
because numerical problems are eliminated in the computation of
position coordinates for near-collisions.

The regularizing transformation from t to Y was used by
Sundman (1912) in an investigation of the three-body problem.

Stumpff realized that the transformation was of computational

16



value in solving the two-body problem, and that the resulting
formulas could be placed in a form that was equally valid for
elliptic, parabolic, and hyperbolic orbits including the cases
of circular and rectilinear motion. He also realized the re-
lation of the general formulas to classic formulas for elliptic,
parabolic, and hyperbolic motion. This provides an alternate
way of deriving the general solution, i.e. it may be obtained
by manipulating classical formulas. Herrick (1960) used this
approach and his formulas were modified to obtain the general
solution above before Sconzo informed the author of Stumpff's

prior work,

17



1.5 CORRESPONDENCE TO CLASSICAL FORMULAS

In the case where o is negative, let

define the length a and let

AE = Jula v

define the angle AE. Then the functions So* 51’ 520 S3 may be

expressed in terms of ‘/.1.t/a and trigonometric functions of AE,

For example,

s = zp3/3! + o zp5/5!+ az ¢7/7!+ a3 w9/9!+....

3
3
I UL VYR SN CRT TR O PN L R LY

=V u/a 3 ¢3/3! -Vyu/a > w5/5!+\/u7a ! ¢7/7!—..

-3
pla

VT v 123 o/ ETae) /5t (Ve ) T - .
3
pla

ABE/31 - AE/5! 4 AE/T! - ...
3

K/a

AE - ( AE - KE/31+ &E/S! - NE/TV - ....)

\/u/at3

with similar derivations for SO’ Sl’ 52'

18



The result is that

s. .= cos AE

0
sin AE
s1 = ——
ula
s = 1 - cos AE
2 ( u/a)

s = A E - sin AE

3 /;:‘ 3

These formulas give the following alternate solution when o

is negative (which can occur only when p is positive)., First

r _ + — —
0 o' 7o
g = T s re
0 o " Yo
= 2 - - A s
(u/a) l»l/r0 TS T,

are determined. Then solution of the equation

i A —-— 2 —— i
¢ = t0+ r sin E + O 1 cos AE , it AR sin A E

O S ula 0 ( w/a) a0

gives A E. Then

r=r_ cos AE + o sin A E + 1 — cos AE

0 °  Sula ( u/a)

and
f=1 - i; 1 - cos AE g=t—to-uAE_SinAE
0 uila Vel
f= - B sin AE é=1— 1} l1- cos AE
Yo Sula ¥ ( u/a)
give .
RS NS A
Jr’:f"r’0+g';’0

19



This solution is also valid when a is positive although AE and

v/ # /a are then imaginary quantities., However, the solution is

not valid when « is zero and its numerical accuracy decreases

as « approaches zero,

The formulas for t, r, f, g, i, g above all reduce to classical
forms such as those given by Herget (1948) if

AE = E - EO N
where E and E0 are, respectively, the eccentric anomalies at

time t and at time to. The well-known relations

r =a(l - ecos Eo)

0
00 =\/iH a e sin EO
are used to obtain the results.For example,
. A _ s
t =t + 1 sin E + o 1 cos AE +P"AE sin AE

0 0 Vv u/a 0 pla V u/a

t0+a (1 — e cos EO) sin AE [/ pla

W pya e sin Eo(l - cos AE) / ( p /a)

+u (AE - sin AE) //u/a 3

20



so that
u/a3(t— t0)= (1l — e cos EO) sin AE

+ e sin Eo(l - cos AE)
+ AE - sin AE

= sin AE - e cos Eosin AE + e sin Eo

- e sin EO cos AE

+ AE - sin AE

= AE+ e sin E_ - e (sin E_ cosAE + cos EO sin AE)

0 0

= AE 4 e sin Eo—esin (EO+ AE)

— e sin [E0+ (E - Eﬁo)]

= (E-EO)+e51nEO

reduces to the classic form of Kepler's equation

E-esinE:Eo—esinE0+ ,/;.z/a3 (t—to).

Since all the steps above are reversible, an alternate derivation is

to define

d):E'Eo

Voula

and express Kepler's equation and the classic relations

t = a(l - e cos E)
f = 1 - ; [l—cos(E-EO)]
 E-E)- sin(E E,
0 0
g=1t -t -
0
pila
f=-Y“B2  GL(E-E)
r r 0
0
' a
g =1 - — [l-cos(E—EO)]

21



in terms of ¥ and « .

In the case wherea is positive, let

AF = Va ¢
define the angle A F. An equivalent definition
AF =i AE
where i= \/—_l- and
o = - u/la.

Either definition gives

s0 = cosh AF
sinh F
s1 =
vV a
cosh AF - 1
S =
2 o

_ sinh AF - AF
S
3 /3

(¢

which may be reduced as above to obtain classic formulas for

hyperbolic orbits. The solutions in terms of AE and AF are
both equally valid for all cases where « is not zero, but im-
aginary quantities are eliminated by utilizing AE for negative
o and A F for positive g . However, both solutions decrease

in accuracy as « approaches zero.

In the case where ¢ is zero, the functions s_, s

S s

0 1’2" 73
reduce to
s0 = 1
s, = Y
s, = zp2/2
s, = 07/3 !

22



since only the leading term in these series is then non-zero. The
resulting formulas may also be reduced to classical formulas for
parabolic orbits. This suggests the possibility of using AE for
negative a , ¥ for zero a, and A F for positive «, which
corresponds to the classical approach. However, use of ¥ in the
general solution for all values of @ is advantageous for several
reasons. Computer storage requirements are reduced since only
one formulation is required. The general soltuion is also contin-
uous through zero ¢ so that small values of @ do no require a
separate formulation for nearly-parabolic orbits. These advantages
can become very important in practical applications where diff-

erent types of orbits may be encountered.

23



2, THE PARTIAL DERIVATIVES OF THE SOLUTION

2.1 DIFFERENTIATION OF THE SOLUTION FOR COORDINATES

The solutions T and T are functions of the initial conditions ?0
and ‘i—’o as well as 4 and the times t and t . The differential re-
lationships giving d¥ and d¥ in terms of df and dF

0 0
and the time differentials dt and dt0 are very important. The

as well as dpu

differential relation between d¥ and df’o, d'i’o is given by Herget in
a form due to Bower (1932) which is similar to the earlier work
of Kuhnert (1879). Sconzo (1963) has extended this approach to give
the differential relation between d’i" and d?o, d—.fo as well, The
approach given here is similar but concise expressions are ob-
tained which are valid for all cases of two-body motion. The
differential relationships are obtained by first differentiating the
equations of the solution for coordinates and then combining the re-
sults to eliminate all differentials other than d?, dx—‘" and dT_, df"o,

0
dp, dt, dt_.

0

The differentiations are as follows.
Differentiation of

T={7T + g

o
-
r

gives

24



Then

f=1 - Ms,‘:/r0
gives
de—du Sz/ro_“dsz/r0+ y,szd ro/ro .
= [—(f—l)dro—udsz—szdu]/ro
and
g =1t~ to - K s3
gives
dg = dt - dt_ - -
g 0 du s3 uds3
= - uds3—s3du +dt—dt0.
But the alternate expression
g = r0 s1 + UO s2
for g gives
dgzrods +sldr+ (rodsz-l»s2 dO’O
= +
sldro+r0dsl gdsz+s2 doo
Similarly,
f=- u.sll(r ro)
gives

df= - dpu sl/(r ro)-— I dsl/é r&+ Bos, dro/r r02)+usl dr/(r2 rO)‘

= — f dro/ro— fdr/r —p d SI/G ro)— d u sl/r ro)

and
é =1 —psz/r
gives
2
dé = - dusz/r - pd sz/r + uszdr/r
= [—udsz—(é—l)dr—szdp.] / r.
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But the alternate expression

é=(r5 + 0'51)/r

00 0
gives
g = +
dg (r0 dso t s, dr0 % ds1 ts) d UO)/r
2
- (ros0 + % sl) dr/r
= [sydry - gdr + rods 4+ o ds +s, dGO]/r.

The differentiation of the equation

t=t +r_ s, + Uos+ﬂs

0 01 3

2

is equivalent to equating the two different expressions above for dg.

This gives
—uds3—s3du +dt—dto=sldr0+ rodsl+ %ds
rodsl+ oodsz-i-uds3=—sldro—szd00—s3d#
+ dt - dto

Similarly, differentiation of

roso+ UO sl+ [0 s2

r =

2

+ s

2

dO’

is equivalent to equating the two expressions above for dé. This gives

[~ p dsz—(g-l) dr - de ul /r

=[sydry 0 “®o 0 %51

dr=sodr0+s1 d(70+s2 du

+r0 dso+ 00 dsl+ ¥ dsz.

26
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The differentiation of

5,51 + @ pe2r 4 oF w tare o b6 e ...

0
n

1 b+« ¢3/3! + a2¢ 5/5!+ a3 ¢7/7!+....

2 3

d)6/6! + o zp8/8! + ...

0
|

5 = ¢2/2!+a ([)4/4!+a

12}
H

3 zp3/3! +a ¢5/5!+ az ¢7/7!+ a3 ¢9/9!+....

is conveniently expressed by utilizing

9 s
= ¢2/2!+ 2 o ¢4/4! + 3 az ¢6/6!+....

ox

ds
L. Ptr2a w53l T

oo

Os
—2-= zp4/4!+2a Zl)6/6!+3012 ¢8/8!+....

oo

ds
—53——= WISt 2 a ¢ /143 a® w91 e,

Term by term differentiation of the series and combination of the

results gives

aso

dsO= Olsld‘d)+ 5 d o
0s

= + o

ds1 sOle d
O0s

ds 2

22 = Sldw+T do
053

dS3= Szd¢ +Tda.
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Finally, differentiation of

e a2
T = (ro . ro)
% " ?h " T

gives

1 — e d

dry = 5 (Ty - T)
=d?*, . 7T

o To/%o
o - - N — —
d 0 ro dr0+ ro

0 0



2,2 THE COMBINATION OF THE DIFFERENTIALS

The combination of the differentials above to give dr and dr

as a function of d?o, d?o, du , dt, and dto is simplified by using

the relations.

0=—fr+fr
and
fg - fg = 1

which are derived in Section 2.4 below.

Substituting the two expressions for ?0 and 1"6 into the formulas
above for d¥ and di gives
dr=fd"f0+gdr0+ rodf+r0dg

fd?0+gd'?o+(g?_ g T) df

+(-fF + f"f) dg
so that

dF fd?0+gdi’0+?('gdf_fdg)

+f:’(— gdf+ £dg)

and, similarly,

d‘f:fdrro+gd'i'0+r0df+?odg
:fd?o+gd';r'0+(éf'- g?) d f

+(-fTH+ED A g

29



so that

d'?:id‘r’o+gdi’0+“r’(gdi—f'dé)

+ T(-gdi+fdg).

The expressions (gd f - fd g), (-gdf+£fdg) and
(g d f-fd g), (-gd f+fd g) are evaluated in order as follows.

Firstly,
(gdf- fdpg) = g[—(f—l)dr0 - udsz— szdu] /r0

—f[sl dr0+ rodsl+ (Todsz+s2 dUO]

= [-fs; —(£-1) g/x ] dr - fr ds, —(gH/r + £ 0))ds,

—fs2 doo—(g sZ/rO) du
. . as
[—fsl—(f—l) g/ro] dro—fro (soadsd) t—pgg— d@)
. . 2
-(gu /r0 + f 00) (s1 d¢y + 5 da)

-f s, dOO— (g SZ/rO) du

= [—fsl—(f—l)g/rol dro—[froso+(gu/r0+foo)sll dy
. s ] ds
-[fro—aa—— +(gu/r0+f O’O) 5 ] da
- f s, d oy ~ (g SZ/rO) du
rs + 0s s
. . + 070 01 2 .
= [—fsl-(f—l)g/ro]dro—[f - - rrOg]rdzrl)
3
gs) . s
[ rr 0 oa
rs + 0s us s
b (070" 0% _ ) lda
r r rr 0 do



= I-fs) - (-1 g/rgl dro - (fg-1fg) ray

s Os
+ B (s 1 - s 2 .
r 1 —~So 0 T) da _f 52 d O’O
- (g sz/ro) du
s s
e [ofs —(f-1) & B 1 _ 2 da
= [-f s (f l)g/rO] dr0 + - 2(s1 5 s0 5% ) >

~f s, doo - { éSZ/rO) du

But the 1deg1t1ty 9s 9s

s = 2 (s ! s 2 )
2 - 1~ da T Sy g
is treated in Section 3. 1.

This gives

(gdf- fdg) = [—f. s ~(f-1) é/ro] dr0

..../Jsz

2 > LS
- T 5, 2(udro/r0 +rO dro- du/ro)/Z

- fszd % -(g sz/ro) du

= [-fs -(£-1) §/rgldry - (3=1) s, (u dro/roz + dF, - du /x,)
~ f s, dUO—(ész/rO) du

= [-f s, —(f—l)é/rO +{(f-1) (g'_l)/ro]dro
-(g-1) s, ‘i'o . d"r’o - fsz dog ~ (s,/r) du

= [-f s —(f—l)/ro] dro- ro/ro - (g-1) S, Ty dr0

~fs (F .d¥ + 7

270" o T Tt dry) - (s, /x ) au
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or, finally,
(gdf-fd

Secondly,
(-gdf+fd

fs + (f-1)/r
) = - 1 0 ? .dF_ - fs T .47
g = Y 0°0 2 0"
0
- 1 s, ?O-dro - (g-1) s, rondro - (sz/ro) dp
g)= —-g [-(f-1) dro - udsz - szd,u 1 /r0
| T .
+f 1 sldro + r0 ds1 + 0 dsz+ SZ d 70!

= f- + f g+
[fsl+( l)g/rO]dr0 rodsl+(f 0 gl»t/ro)ds2

+ { d ¢ +
°2 o e s rg)

+ fr

:[fsl+(£—l) g/ro] dr0 0

(sodd)+
3s

+(f o +g u/ro)(sld¢+

0

+Hg sz/ro) du

= [fs +(i-1) g/rol dr

+ [f(ros + o, Sl)+gusl/r0] dy

0s
ox

da) + £s
o

0 0

851 852

+[fr0 % + (f 00+ gu /rO) Ba]da
+ f s, doo + (g sz/ro) du

r s_+ ¢g.S

00 01
= [fsl+ (f—l)g/rO]dr0+ (f - -

s s

f g o

tI T, +(f0+gu/r0) aa]d

+ fs2 d 00+(g SZ/rO) du

32
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[fs, +(f-1) g/r Hr, +t(fg-fg) rdy

0s s
] f d
+[f o o + (f oo+gu/r0) ™ Jda+ 5, d UO+(g sz/ro) B
851
= [fsl+(f—l) g/ro] dr0+rdzp+[f Ty ™

352
2
a]da +fszd 0+(gsz/r0) dp

+ (f cro+ gu/ro)

But

(02 = - - g - -
S dsl+ 0ds2 +uds3 S dro Szd 0~ 53 du + dt dtg
from above so that

0s 9s 353

1 2
ro(sod¢+—:m— da ) + oo(sldzp+ v o) +u(52d¢+ e da )

=—sldr0—s2 doo—s3dp +dt—dt0

s 852 Os
+ O + M
0 S 0 S

(r s +o0._s ) de

0% T Tp° tHS) Y = - (x

- d - - d + dt — dt
s r sda0 53,1 d

9s Os Os

.l,
0 o Oaauaa

0

) dao

- sldro—szd Uo—s3dp +dt—dt0

This gives asl 882 853
(~gdf+fdg) =[fsl+(f—l)g/r0]dr0—‘(r0 E-} %

- s, dr_ —-s_d ¢ —s3d,u,+dt—dt

1 0 2 0 0

9s s
+(f o, +gu/r)
dex 0 0" ba

lde

+ [f r0

o
+fszd 0+(g sz/ro) du

33



= [ (f-1) s, t (f-1) g/rO] dro

9 o
. ] asl . 852 , s3 e s1
0 B« 0 S %Y 0 B
852
f + f— —
+ ( 7 gH /ro) ~ dat (f=1) s, d 7, + (g sz/r0 53) du
+ dt - dtO.

But the coefficient of da 1is
9s 9 s d9s

-1 -1 o ]
{ ) Ty . + [(f-1) 0 + gk /r0 oo
-us 9s -u s 9s
2 1 2
= — _— 0 _+ o [ ]
- T oa + " 0 (x‘os1 + OSZ) /rO
0 0
le Bsz 853
= - p|(s - s )+
2 8a 1 pa 8ax
and the identity
2% =2 (s, 95 slasz )
ool da
is treated in Section 3.1. This gives the following coefficient for da
ds as3
- 2 0 - - —_
" (3253/ + oo Y= (g s, - &S, Bs, s, p2 - y/2
as
=[gs, - s, (rosl+ 0052+us3)—p 2 aa] 2
853
- - t-t 2 2
@Sz [s, (t-t )+ ¢ ™ )/
Thus
—gdf+f = [ (- -
(-gd dg) =[ (f=1) s, +(£f 1)g/1~0]dr0+(gs;2

ds

- s, (t-tg) + a2 Dda/ 24 (£-1)s, 49

+ (g sz/rO - s,)d tadt - dt
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Setti
etting 8-53

o

u = S2 (t—t0)+ “-2
gives

(~gdf+fdg)=[(£-1) 5 + (f-1) g/ro] dr0

2 . .
- T . d4dF -
+ (g s, U)(udro/rO +rO dO du/ro)

+ (f=1) szd GO+(g sZ/rO - sj) du + dt - dtO

= [ (f-1) s) + (f—l)g/ro - (-pu sz/ro)g/l‘ol dl‘o + U (-p /1'02) drO

_U) T .dr -
+(gs2 )rO dr0+(f 1) szdcro

+(-g 52/1'04-U/r0 +g sz/r —s3) dp+ dt - dt

0 o

= [{f-1)s + (f-1)g/r - (f=1)g/r ] dE’O-?O/rO

2 - - I >
+ U (- u /r0 ) dro-ro/r0 + (g 5, —U)ro-dro

+ (£-1) s, doo + (U /r0 - s3)du + dt—dto
= [(£=1) 5 /x| TodF + U (-u F /r ") dF ) U T .dr

+ gs, rO-dr0+(f—1) 5, (ro-dr0+ rO'dr )

U _ o) dp +dt - dt
Y g =8y 0

and, finally (f=1) s
1 — — Z» —_ - Z»
(-gdf+fdg)-= ———r—o———— ro-dr0+(f—l) s, I'O'dr0 +(f—l)sz ro-dr0
+ - - + .'-?»' - _ ->. - _
gs2 rOdr0 U Odr0 Urodro+(U/r0 s3) du
+ dt - dto
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The quantity U may be placed in the form

U = 52 (t—to)+# { 11154— 355)

where
34 7 v tar s azp6/6!+ a? w881+ o’ y 014,
sg = zp5/5!+ o zp7/7!+a2 ¢9/9! + a3 wll/11!+.

by using the identity

853

oo

2 =zps4—3s

5

treated in Section 3. 1.

Thirdly,

(gdf-fdg) = g(-f drO/rO -~ fdr/r- p,dsl/r ro " dp Sl/ rrO)

-1 (so dr0 - gdr + T, dso+ cfods1 + ) d 0'0)/1'

= (-f g/ - iso/r) dr - (f ro/r)ds  —(gufr T )+ fao/r)dsl

- (f sl/r) d 0'0 - g sl/'r rO) du

L ) fro 9s
= (—f g'/ro - fso/r) dro— (as dy+ — da)
ds
—(gu /(r r0)+ fUO /r) (sodd) +T; da )
-(fs /r)doy - (Bs firry) du
= (—% é/ro - f so/r) dro+ [- f rc’Olsl/r2
. fr s
-(é#/rr0+f Uo/r)SO/r]rdKP—[ rO 8ao
. as .
+(éu/i' r0)+f Uo/r) o0 jda - (f sl/r)d 00 - (ésl/r ro)dl»l.
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But the coefficient of r d¥ is

. 2 . . 1 0 1
- o - o -
fro sl/r (gt /r r0+f O/r)so/r 5
rr r
o
) rOsO+ 0'051 u _ usl 0 s0
r rr rr T i
0 0
= - —5 (sz-— asz)
3 0 1
T
and the identity
2
502 - asl =1
is treated in Section 3,1,
Thus
sdf-f = (~fglr - f
(g d d g) (fg/ro so/r)dro
le ds Js
-~ =7 g da
3 (- %% * %07 o)
_ - o - _ ]
sl dr0 SZd 0 sBdIi + dt dt0
fr ds gu/r_ +f ¢ ds
- 0 0 + 0 0 l] do
r da r o
—(f sl/r) do - (ésl/r rO) dp
= [- fg/r —fso/r+ —r"‘3— 81] dro
s Os 9s
1] 1 . 3
* 3 Ero . T 7o % vV )
9 . i o 9
fro 5o gu/ro+ f 0 )
- - do
r da r da
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fs g s
U _ 1 o H 1
+ 3 SZ r ) d 0 + 3 S3 T rr ) dp
r r 0
. bk (4t -
3 (d dto).
r
But the coefficient of da is
o] b} ] 9
B, 8! . 2,y °3 ) +“51 o °0
3 0 lo 0 da o rr r S
T 0
+ O 2
1 (Jo% " 0% " S0 U
r T rO r ro 0 Jo
u 0 sl asz 853 Bso 0 sl
= 5 [r + O + p + 1 (s - s
r 0 oo 0 oo S 1 oo 0 b
and the identity 5s s
2 (s 0 s ! } = s .s_+ s
1 S 0 b T 12 3

treated in Section 3.1 below gives

r3 da 0 oo o
- U . 0 sl t o 0 SZ +p as
3 ["0 0
r el oo da 2

o 2 0 dor
s_sS 5 s
2 3 3
+
NP S R ]
for the coefficient of dao . Also,
0s
2 ! 4+ s s_= s_58
2 352 + s = 2
™ %13 7 %2

treated in Section 3.1 give

the identities

38
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2 3
7 . 1o . 2
5 [rslsz+ Ty slsz+ 0 52 + uszs3+u 2 - 1/
T o
U s s s
2 1 u 3
= — r ) . 2
ot T byl oSt msg ez =3
r
853
= - (g-1 —H_ t—t )+ p.2 2
(g )51/r+ r3 [Sz( 0) [T ™ 1/
_ 4 K
= [ -(g-ls/r+ —-ul,
r
for the coefficient of dog¢o . Thus
S df—fdeo) =[-f o _f B
{(gdf dg) =1-f g/ro fso/r + r3 51] dr0
pdr . .
. 0 e - d“
+ [ -(g-1) sl/r + 7 U >+ -dro - .
r r 0
L] 0 M
fSl M gs].
B - _
+ 3 SZ r ) d UO+ ( 3 3 rr ) du
r r 0
- K _
3 (dt dto)
r
: : e b e
:[_fg/ro—fso/r+ 3 sl— (g-1) + 3
r rr r
i . N ’192 i'.S
+ [—(g—l)sl/r+ 3 U]‘fo-dro+ (4 - - }y d 00
r r
s1 ésl
+[+(g-1) - & U , £ 5 _ 1 du
rr 3 r 3 3 rr
0 r 0 r 0

- e _
3 (dt dto)

r
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0 0 3
T
r Ty
(g-1) 5 (g-1 fsl
_ o . - -
+ [ + 5~ U] rodr0+< 5 )do
r r r r
°1 U
- - ] - S -
- — 5 s Mu = (- d)
0 0
“Sl 1 f 3
- b, - — . T —_ p’ - T . T
=l -fsy/rrg+ 3 2l Tord Ty 37 U (ury/rg) e drg
0 r r r
0
(g-1) s fs +(g-1)/r
1 u N 1 > e =
+[- - + r3 U A dro - - (ro-dro+ r 'dro)
1 U n
- - - - -
+ [ . r3 ( . 53) ] du r3 (dt dtO)
0 0
or ,finally, ) S() 1 e
. . _ . . - _ . - . - _ _E... P . -
(gdf-1£fdg) f(rr + > + > )ro drO 3Ur0 dr0
0 T r r
0
(é-l)s1 " . fsl+(g—l)/r . .
+ - . + r3 U] rO.d rO - - (rO- dro + r-o-dro)
°) M u
- - - - £ -
+ [ p— 3 (= s3)] dp 5 (dt dto)
0 r 0 r
Lastly, since
f g - fg =1

it follows that

dfg+fdg-dig — fdg =0

(- gdf+fdg) =-(gdf-fdg)

f -

sl+(f l)/r0 - .

= r «dr_ +1{s
r 0

0

He-1) s, 1o.q4% '
2 0 dr0+952/1‘0)d}1
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Then substitution of the final expressions for (gd f — fd g),
(-gdi+ fdg), (§df- fdg), (-gdf+fd§) into the expressions
above for dr and a7 gives the final expressions for the differentials.

Firstly,
fsl+(f-l)/r0 . . g

d?:fd'f0+gdr0+r [— ro 0 0 2 To 0 2 %o° 0

.
—

- {g-1) 5, ro'dr0 - (sz/ro) d“]

. (f-l)s1 .
+r Y ro-drO + (£-1) S, Ty

Wd T+ (f-1) s, T od ¥
o 0

250°% %o

2 0 0

-~ dt
+dt d OJ

or, as the final differential d_;,

"-'u '?'»‘ _ —'->.-'-> _
+gs T .dT +Uod'1’0 Urodr0+(U/ros3)dM

—.:f - + :Pi'b‘—b
dr dro Urrodr0

fs 4+ (&g . L. . (] ‘
- - rro-dro—fszrro-dr0+ - s T r’)'dr0
0 0
+(f-1) s, 'r"r’o-d?o +gdr_ -U 'r"fo-d'fo
-f s, r rO-drO —(g-1) s_r rO-drO + ({-1) s, T rO-drO + g s, T ro-dr0

+[’r’(-s2/r0)+"f(U /ro— s3) ] dp + ?’dt—‘;’dto.
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Secondly,

0 1 1 ’
_.' — 2y 7. - _ - ERT AT
[f(rr + 5 + 2)rodrO 3UrO dro
0 r r r
0
(.-1) s [ . » .
- L3.ar + £ y 7.47
r r 0 0
3
fs, +(g-1/r i
- - (r0~dro+ r odro)
8! B
- S - - _
du 3 (= s5) du 3 (dt dto)‘l
rr by 0 r -
0
fs +(-1)/r ) .
- M - — M - Sy
ro ro-dr0+fszr .dr +st rO-dro

2 0 0
: Ty (%0 1 1
T + - —) T A7 2 1IN=> - . —_
fdro U (~pu 3) T, drO f(rr t=, t Z)r Ty dro
r 0 r ro
fs + (g-1/r isl+(f-1)/ro .
- - rro'dro+ " rroodro
0
+is. FT .d¥ + §dF -U( ?):' ar
52 "o % T B, T "‘r3 o' %o
(8-1) s . . fs +(g-1)/r )
- L S s 1 o7 .ar
T 0 0 r 0
. J » o 9 . sl
+ f s2 r ro-dro + (g-1) s, T rO-drO +[r(- ﬁ)
> ®2 T U Y
+¥ — -y 50— - 53) ] dy- p—5(dt - dt,)
r0 r 0 r
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or, as the final differential dr,

2y ! %3 —
dr = fdrO+Urro dr0

2

s
¢ 0 1 1 -
—f(r-—; + > + )?ro
0 r r
fsl+(f-1)/r0 . -

ro 0

=}

+

e}

f s) + (g-1)/r 7.
- - 0

d‘z’o -

-

dr_+
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2.3 THE PARTIAL DERIVATIVES

The differential relations obtained above may be expressed in
terms of a set of partial drivatives as follows. Let x, y, z be the
components of T and %X, y, z be the components of T so that Xy Yo

z_ are the components of ¥, and % are the companents of

%0 0 0’ Yo' %o
o Then the differential relations above may be expressed in the

following matrix notation,

dx f 0 0 dx0
d = 0 f 0 d
y Yo
dz v 0 f dz
f i
5 + (f 1)/r0
o
x
(£-1) 5 .
+ . Y
T .
0 z
. ] L ] . F 1
b4 [XO Yo ZO] dx
f- ' y
+ (£-1) 52 vy dyo
é dz
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e K

Ne

g 0 0 dxo X [xo Yo ZO] dx0
+ 0 dy ’
0 0 g dZO Z dZO
r d ’r: .
. x X Yo z0 X, N YO z0
-1 s, ‘| Y dyo —(g—l)s2
_Z dzO |
-
<] |x z | [ax x| {x. 5
o Yo %o 0 o Yo
+(f—1)s£ y dyo tg sz- y
z dz z
L
- * o
X x -52/r0 dy x
. U . < * dt -
z z z
and,
dx (i o o] [ax ] %, v 2| [ax
, 0 0 0 0 0
- - f U . .0
dy 0 (2 dyo + vy dyo
dz 0 0 { dz z dz
. 50 : x [xo YO ZO] dx
—-f( + —2+ —2) . y j}Z’O
T ro r rO . 0
b'd x v z dx
fs *(g-1)/r [ o Yo o} 0
- - . Yy dYO
z dz
0

45
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- X [xo Yo ZO] dx0 pe [:XO Yo zo] dx0
fs_ + (f—l)/r0 ‘ P ] . 4
+ Y Yol +fs_. Yy Yo
o z dz 2 z dz
0
g 0 O dxow X [XO Yo ZO] dxo
0 g dzo_J d
~ d‘ . . . d-
s 4 (3-1)/r * [xo Yo zo] *0 (3-1)s x ["o Yo zo} *o
178 .Y dy . dy
- r .0 T Ty * .O
L'z dzo dz0
. X l:xo Yo zo] dx0 x [:xo yo zo] dxo
+ f S, *|Y dyo + (g-1) s, |Y dyo
z déo z dio
[x x % -s /rr
1 0
+ y v Y sz/r0 e dy
Lz z z U/ro -5,
r—bc e
X X
+ y{.dt - |y .dto
L Z

The coefficient of dt in the above equations is a check on the solution
of the differential equation. The coefficient of dto is the negative of that
for dt which indicates that an increase in dto is equivalent to a decrease
in dt and vice-versa. In most applications of the differential relations,

t and t_ are treated as fixed quantities and x, y, 2z, X, Yy, Z are con-

0
sidered as functions of Xq Yo' 2o ;co, {ro, ;'0 and sometimes , as well.
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The differential relations are usually expressed in terms of a set

of partial derivatives as follows.

dx 3 x/i)x0 8x/8y0 SX/BZO dx

0
dy [= | 8 y/axO By/ayo dy. 820 dyo
dz Bz/axo Bz/ayo dz/ 8z0 dz0
3 x/ 8x0 a x/ 3}’0 0 x/azo de
+ |oy/ 8xo 8y/8yo ay/azo dyo
8z/8x0 82/8y0 8z/8z0 dz0
ax/ oy X x
+ {dy/duf-dpy + |y |-dt - |y - dt
8z/ ou z z
dx 8 x/0x,  8x/ 3y, 9%/ 9z, dx
dy |= ay/axo ay/ayo 8y/8z0 dyo
dz Bz/axo 8z/3y0 Bz/Bz0 dz0
[, L} ’ . . . . .
8%’ 8% a x/ 3y, ax/ oz dx0
. . . . 9 . 8- .
+ 198 y/3x0 dy/ ayo y/ z, dyo
L . . . 8' 8. .
L 8z/8x0 8z/8y0 z/ z, dz0
r8 x/8y X %
+ [dy/éuf-dp + |y |at- v dt
dz/8u z z
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The partial derivatives of x, y, z and %, y, 2z with respect to p

are merely the coefficients of dy in the explicit differential expressions

above.
9 x/ ou [«  x —sz/r0
dy/ du = |y v U/r - s
. 0 3
9z/ ou tz z
. r-. . ..
ax/ du X X x —sl/(r ro)
ay/ ou =ly v v sz/r0
oz/ o {_z z z U/r0 - S,

The partial derivatives of x, y, z and x, y, z with respect to

z_ and x are given by collecting the coefficients of

0’ Yo' %o 0 Yo’ %o
dx ., dy dz and dx _, d)'ro, déo in the explicit differential expressions

above. A more compact matrix notation is also used to express the

X

results as follows.
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8x/3x0
8Y/8x0

Bz/axO

ax/ on
By/aio
8z/ 8x0

9 x/ax0

9v/90
y/ 9%,

8z/0
z/ X,

9 x/ 8x0
dy/ on
aifaio

8x/8y0
By/ayo
az/ayo

BX/ayo
8y/8?0
82/8?0

Y

8x/ay0

8{7/83?0

8400
z/ayo

49

8x/820 f0 0 x
— f 0 + . L4 an (3]
By/&zo 0 Uuly [%O Yo ZO]
9z/ 9z 0 0 f z
0 —
S| s, 4 (£-1)/r
-1 O _is|[® Yo %o
+ |y ¥ Yo g .
. o Yo %o
z 2 (f-1) 5
] - (£-1)s,
0 -
8x/8é0 g 0 0] X
ay/oz | =10 of - x vy z
y/ oz, g vy E‘o o Zo]
dz/dz 0 0 gj zZ
x xi[-f s, —(g-l)s2 Xy Yo Z
+ly ¥ N
. (f—l)s2 g s, 0 0
zZ z
9%/ 9z f 0 0 %
a. a - . .e (13 - .
yi9z, o f ('> R [Xo Yo Zo]
92/8 2z 0 0 f z
0
+ s fs + (g-1)/r7
fi0 1 1 1 %y
ST T "
‘ 0 0 XO YO
fsl + (f—l)/rO f-sz
L. %o 4
ai/aéo g 0 0 ¥
8y/820 _|o o] —U |y [XO Yo ZO:]
dz/ z, 0 g
. fsl+(g-l)/r (g-1) sl_l
X X —_ - y z
r r 0 ‘0 O
+ |y vy . v. oz
. fs ('_1 s 0 0
s 2 g-1) s,



In the expressions above for the partial derivatives, the parameter

U = S, (t-t0)+u (v 54 - 355)

is a monotonically increasing and unbounded function of the time t. In
the case of elliptic motion where o is negative, all other quantities in
the partial derivatives are periodic with the period
T = 2@ [l/t - 3

of the elliptic orbit. In general, the partial derivatives of x, y, 2,

X, y, 2 with respect to Xgr Vo1 Zg ;(O’ §r0, éo and y then have an un-
bounded oscillation in time since the velocity components >'<, {r, z and
acceleration components ¥, ¥, Z which are multiplied. by {J have an

oscillation about zmero with the period T. However, this effect can be
nullified for some derivatives if some of the other components x ) );O'
z, and ;EO’ 'y'o, 'z'o multiplying U are identically zero., In particular, the

coordinate reference frame may be chosen so that only X and §r0 are

not identically zero, and the unbounded oscillation will then occur in
only eight of the thirty-six partial derivatives of X, ¥, z, X, y, & with

0: yo, ZO; XO, yo, ZO.

In the case of elliptic motion, it is shown in Section 3.1 that

respect to x

2
s A E/2! - (l-cos AE)
4 4
Vu/a
3 .
s = A'E/3! - ( A E-sin AE)
5 5
uila
Which, with
) - AE
Vi l/a
s = l - cosAE
5 =
p/a
(t-to) = r0 sin & E + 0'0 *_I"COS.A E + AE - sin ?’AE
Vokla M /a u /a
g = r sin AE l-cos AE
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from above, gives

A - sin A - ; A
U= 3 E sin A E + 1 cos AE (g - u sin }:E;).

v nila > pla viula

Of course, the partial derivatives may be computed for elliptic motion

by using AE rather than ¢ to solve for the coordinates and determine
all the quantities in the partial derivatives. Then the only secular term

in all the derivatives is that due to A E in the expression above for U .

51



2.4 THE INVERSE PARTIAL DERIVATIVES

The solution of the two-body problem is still of course wvalid if
t is treated as the reference time and T and T as initial conditions.
- .
Then o and _;O are obtained as solutions of the differential equation

at the time tO. For this inverse solution,

+ - -
T

r = e T
-
¢ =T T
2 5
a =71 e+r - 2y /r

where @ is constant in time and therefore equal to the value above
computed from ?0 and ‘i'o. As in the solution above, ¥ and its

transcendental functions,

EO:1+ ozzLZ/Z!+oz2 $4/4!+a3zﬁ6/6!+..

g1=7p+aib'3/3g +azz}75/5! +O!3177/7!+---
EREEILIE T PR RTINS T TR
5, =0 2 a Tt a’ T mia’ 7 e

satisfy the equation
t =t+rs + 0s, +pu s_.
0 1 2 T H %3
The bar is used to distinguish parameters of the inverse solution

from those of the solution above. Also

r =rs_ +03s +u-s_

0 0 1 2
and
f:l—p.sz/r gty - t—ps,
f=—#sl/ror g:l—usz/r0
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which give
r
0
- R

= n + r
0 g
as the inverse solutions of the differential equations,

However,

t
» = dt*
r¥
t

0

from the definition of ¥ above where r* is the value of the radius at

the times t¥* between to and t, But

tO t
¥ = /dt* = - dx = -y
_ t r¥* to ¥
so that ¥ is merely the negative of § . Thus

"0~ %0

177 %
27 %2

®3 7 7 %3

so that i satisfies the equation

t =t - + - .
rs gs, Bos,

0 1
Also
r0=rso— O'Sl+u52
and
E:l— —: - t = - —_ -
usz/r g tO +,,¢s3 (t tO s,
f= /.le/rro 'g=l—,,¢sz/r0
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This gives the formulas
T

0=g?-g'1r

Ry

= fF+f7T
0
which were

-

used above to obtain the partial derivatives. In addition,
substitution of

1:-_-f‘r-9,+g1:0 ’
T = f r0+ gT

into the first equation gives
fo=(fg-1fg T
r, = (g g T,

so that
fg- fg:l

which was also used to obtain the partial derivatives. Another property
of the inverse solution is that

U = Sz(to-t) +u {9 54— 355)
where

s4=s4

SS=_SS

which gives

U =-U.

The relations above may be used to express the partial derivatives
in the inverse differential relations
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5 . . .
dx0 xo/ax axo/ay on/az dx axo/ax axo/ay axo/az dx
dy dy,/ox  oy,/ey dyo/ 0z |(dy |, oy /0% dy /oy 3y o/ 02 dy
dz oz /ox  oa /0y 92,/ 82| dz &,/ 0% oz,/0y 92,/ 82 dz
3 9 - X
xO/ i X, Xy
t|ovy/ou| - de 4 Yo dt, = 1y, » dt
0z /[ou z z
0 0 0
. 8- 8 . . . . - o 0 . .
dxo xo/ x 8x0/8y axo/az dx axo/ax axo/ay axo/az dx
. = 8. 8 8, a . . . . . - 4 hd
dy, yo/ x yo/ y ayo/az dy |+ Byo/ax ayo/ay ayo/az dy
dz0 Bzo/ax Bzo/ay BZO/BZ dz 8zo/ax azo/ay BZO/E)Z dz
Faxo/au X, X,
a‘ a R LX) . - (&4 .
+ yo/ I duy + Yo dt0 Yo dt
_azo/apJ 2 Zq
In particular, since
raxo/a” xo xO —sz/r
8Yo/ ou T Yo Yo |l -3
9z /8 z z 3
L0 % 0 0
5% /8 . =
xo/ /7 rxo Xy X, sll(ror)
8&"0/ o Yo Yo -Yo §2/r
9z /9 z. Z U/r - s
B2,/ ou L% %0 %o Ulr - s,
it follows that
I N g : [ _ ]
axo/ ou x0 X SZ/r
8y o/ tu - Yo Yo - Ulr + °3
_azo/au_ | 2, 2,
%/ R o e ~ ( 7
axo du X xo Xy s /r ro)
a. a - L4 o0
Yol o Yo Yo Yo s/t
a. » eo _
_ZO/ 8;44 z, ZO z0 L U/r + s3_J



A similar method of expressing the partials of Xgr Yor Zg

*0’ Yo' %o

and

with respect to x, y, z and X, y, 2z by first using the

functions of ¢ and then converting to functions of ¢ gives

B xo/ax
8y0/8x
820/ 9x

8x0/8§<
Byo/ a%x
azo/ak

Bio/ax
83}0/8x
aéo/ax

8x0/8y
oy /9
vo/2Y
8z /0
zO/ y

axO/ oy

8y0/ ay

3 dy
zo/ y

BXO/BZ
Byo/az =
820/ 9z 0
*0 %o
Yo Yo
zZ zZ
0
8x0/8 z g
ayo/aé = - 0
820/8 z 0
aiolaz f
Byo/az R 0
aéO/az 0
S
- 70 1
—f(—— + ? +
rr I
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0 O x
0

0|-U Yo |:x y z]

g 20
—fsl+(g-l)/r is Xy

2
r
_ fe-1) sy (g-1)s_ || x
2

0 O X4
g 0}|+U Yo [x y z]
O .

g Z0

:
-U Yo [:x y z:]
.Z‘O
f s, t (f—l)/rO
- x
0
) x
fsZ



aicol &
a&o/ak
aio/ai

These inverse partial derivatives

However,

8 )

xO/ %
BYO/Bx
azo/ ox

on/ %
S ax
o/
Bzo/ ox

axo/ax
Byo/ax

Bzo/ax

8x0/8x
ayo/ai
Bzo/ax

8x /oy
xo/ y

o/ 3
8z,/8y

9 9

xo/ y
8y0/8y
Bzo/ay

8 ay
xo/ y

5
B,/ %y
8z0/8y

axo/ay
8y0/8y

oz, / dy

axo/ay
oy /9y
vo! ¥
820/8y

N~

0 /92 »
xO/ z f 0 0 X
/0= [0 £ 0|ty [(x v 2]
8. . el
zo/& 0O o0 f 2
fsl+(f-l)/ro (f-1) s, . , ]
o o
) x v z
—fs2 (£-1) s,

they satisfy identically

3x0/3zT
Byo/az
Bzo/ az_l

axo/aéT

ayo/aé

Bzo/ai‘

aio/a;
890/8z

Bio/az-

L4 d-‘
axo/az
a;o/aé

aéolai_J

are often utilized for computation.

the well-known formulas

. - e e
95/ O O/ 0 95/ 0
x/ X x/ Yo x/ Zq T
= | ay/ 9%, By/ayo 8y/3z0
(02/ 0% 83/0y %/ % |
r_ . . . -
ox/ &(0 8x/8y0 ox/ 8z0 T
a ’ a' 1
uaz/aio az/890 9z/ 9z |
(Ca%/ & 9%/ o ok/oz | T
0 Yo 0
- By av/d v/ 9
v/ ox, v/ 8y, y/ 9z
L8z/ %, az/ayo 82/820 j
P B
ax/ax0 ax/ayo 8x/8z0
dy/0 v/ 0 dy/ Bz
- y/ X5 y/ Yo y/ 2,
l_’az/ 8xo oz/ Byo 9z/ BZOJ

where the T indicates matrix transposition,

x and x

o’ Yo' %o o’ Yo’ %o

Thus the inverse partials of

with respect to x, y, z and X, y, z may be

obtained directly from the partials of x, y, z and x, y, 2z with respect

.
A

to x and :’co, ';ro, o

o’ Yo' “o
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3.SOME USEFUL FORMULAS ¥FOR DERIVATION AND COMPUTATION

3.1 THE PROOF OF SERIES IDENTITIES
Several identities were used in the derivation above for the partial

derivatives.

As an example, consider

This may be proven by collecting coefficients of the same powers of ¥

in the products of the series,

tavdiziea® Fare o)« Ut addrzrs o vhars )
3 2 5 3 2 5
—o (¢+ a7 /3 +a dT/5 '+ L ) (Yrad /3 a4 T/50+ L))
L vavlzr+ 12y val vtyar s 20+ yat) + ...
—a it ol s s y3n -
2 2 4
1 +ay (1-1)+a ¢ (1+46+1—-4-4)/4) + ....

=1

The product is valid since the series s_, s., s_, s_, s,, s_ above are

P 0 "1 %2> %3 %¢ %5
always absolutely convergent. However, an alternate proof is to first ob-
serve that the identity is true for zero a where each series reduces

to its leading term. If o« is negative, then

@ =- pla

s0 =cos AE

sl = sin AE
I’ /a

From above where

AE =/ u/ a ¥

so that

2 2 i 2 2
s — @s, = cos AE + Z ( 510 AE) = cos AE + sin2 AE
u/a
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Similarly, if a@ is positive, then

s0 = cosh AF
s1 = sinh’ AF
VvV o

from above where

AF =ya i
so that
2 2 2 inh. F 2 2
SO - as, = cosh AF -o ﬂh—-—é——) = coshZ AF - sinh AF
L]
=1,

Thus the identity is true for all «

and all ¥ ,
The other series identities used in the partial derivatives involve
850 851 852 353
e ' da ' ox ' sa - They may also be proven by collecting

coefficients of the same powers of.y in the products of the series.

However, the relations

, 850 - ¢51
o

le _
> -¢sz—s
oo

852

= )
o Vs 4

853

S 4 5

"
A=
wn
I
w
w

may be proven by a term-by-term comparison of the two sides of each

equation. If these formulas are substituted in the identities, each identity

is valid for zero @, But
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S:l+aS

0 2
sl=dz+ as3
= 2/2' + s
S2 zj)3 ! o 4
= ]
s3 Y /31 + ass

similarly, so that, for non-zero o,

.. SO -1 - 1 - s0 )
2 o - o
_cos h AF -1 1 - cos AE
- o - ula
) s) - Y ) - s,
s3 - o T -«
_ sinh AF/vVa - AFR/ o _ AE/ Vuja - sin AE/ Vyu/a
- a N pla
_ sinhAF - AF _  AE - sin AE
- 3 - 3
Ve — , VuTa
. S, - P 2y w2 - s,
S, = =
o -
_(cosh AF -1)/ & —(AF/\/E')Z/Z!_(AE/\/}Ja)Z/Z!—(l-cosAE)/(u/a.)
- o - NE
_(cosh AF -1) —AZF/Z! _ AZE/Z!—(l-cosAE)
- 2 - 2
a (ursa)
o< 53C p2131 W3- s
o - a
_(sinh AF -AF)/ 4 a3 -{AF/V a)3/3!= (A ENMy /a)3/3-(AE—sinAE)Mu /a3
* 3 3 u/e
_(sinh AF — AF) -A'F/3!  AE/3! -( AE - sin AE)
= 3 =
/& Julz
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Use of these relations proves the identities for both negative
a where AE is real or positive o where AF is real.

For example,
o 9
s. s_ =2 (s "1 s 2 )
2 73 ° 2 8 1 da
Os 0s
1 2
= 2 — 2
52( aa) s, ( Bex )

52( zpsz-s3)—sl(¢s3—254)

is true when @ is zero since

(0 220 (03731) = (w2720 v w22y — w330 -( We w2731 = 29 */an)

022 = 4O (1/4 - 1/12 - 1/3 + 1/12)

= zps/ 12.

For negative «,

1l -~ cos AE AE - sin AE

_ l-cos AE( AE l-cos AE _ AE - sin AE\
v wla vVila 3 p/a

ni/a B/a ul/a 3 }

sin AE ( AE AE - sin AE
- 3
Vila Vp/a Vi /a

" A®E/21 — (1 -cos AE) )
- 2
(p/a)

{l-cos AE) ( AE - sin AE) = (l-cosAE)(AE -AE cos AE - AE + sinAE)
2
~ AE sin AE{ AE - sin AE) + 2 sin AE A E/2!
-2sin AE(l - cos AE)

= (1l - cos AE) (sin AE - AE cos AE)

2
+ AE (1 - cos AE) - 2 sin AE (1 - cosAE)

= (1l - cos AE) (sinAE - AE cos AE + AE +AE cos AE
— 2 sin AE)

= (1 - cos AE) (AE - sin AE).
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A similar result follows by using AF for positive @, but the use of
AE is actually sufficient since the trigonometric formulas used are

valid for imaginary arguments,
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3.2 THE USE OF DIMENSIONLESS SERIES

For many purposes it is convenient to define the dimensionless
argument

A = wz
and its transcendental functions

cg= 1t A/2) + 7\2/4' + 7\/6' ;

¢1=1/1|+ A/30 + A/5'+ AT/TN L.,

c, = 1/2! + A /4! + 7\/6!+ A3/8!+
¢, = /31 + A /514 NI LI
c, = 1/41 +A/60 + AZ/81+ AC/100 4 ...
2
cg = 1/50 + A/70 4+ A /9! + 7\3/11' + ..
which are related to SO’ Sl’ SZ’ 53, 54, 55 by
SO: Co
sp ¥
:zl)zc
52 2
S = 3C
3°9 3
s = 4
4 =Y 4
. .5
5 ~ ¥ ©g

The dimensionless series have the property that

c. =1+ A c

0 2
c1=1+ A <,
¢, = 1/2! + 7\c4
€y = 1/3! + }\c5

or, conversely, if A # 0, that

cg = (cg = 1/31)/ A
c, = (c, = 1/21)/A
cg = (c; -1)/2
€2 = (cy - /A
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In terms of trigonometric or hyperbolic functions,

2 3
c0=1+x/2!+'x/4!+A/6!+.

for A £ 0,

2 4 6
L+/ % /20 4+ /X 74 +y/X 6! + ...

il

cos h ﬁ=cos h{iy- a)
= cos ‘/ - A

2 3
) I+ A3! + X /514 X2 /704

(¢]
1]

3 5
(Vaar Va3tV a /st o) W

sin hV A /ﬁ= sin h(iV-A)/ ivV-A)=isin VoA /(iV-2)

= sin V-A/ V- X .
Let o {42} and S {42} be, respectively, the values of ¢ and <) for the
argument (4A) rather than A . Then, forA> 0 and A <0, respectively,

o {42} = cos h V 4x = cos -4

= cos h(2V A ) = cos (2 V-2

2cosh2V7L —l=2cosz VvV - -1

h {4a}

i

sin hV4Ax / V4x= sin V-4x / V _ax

sin h VA )/ @VX ) =sin V)7 @ V=)

2 sin By a cos hf A / (2fR)=2sin J-Acos Y=/ (2 N)
cos h\/r {sin h\/;\_/\/—?\— ) = cos /- A-{(sin ﬁ/ V=2
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so that
2
4 = -
co{ AP =2 o {2} 1
4 = A . ]
o, {antz e At - o ()
These two relations are also true for zero A, and are thus valid
for all values of A. It is worth noting that the argument

2
A=y .
and o are simultaneously positive, zero, or negative except in

the trivial case where ¢ and thus A are both zero.
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3.3 FORMULAS FOR THE SOLUTION OF KEPLER'S EQUATION
It was shown above that the general equation

t=t +r s + C

0" ToS1 T sy tHs

3

relating t and ¥ is a generalization of Kepler's equation for elliptic
motion, Stumpff (1962) calls it the main equation but prefers an

equivalent of the alternate form

t=t0+r0¢+ cros2+'yos3.

The first, second, and third derivatives of this alternate form

with respect to ¢ give the formulas

r=r0+ 00s1+ 'yosz

for the radius,

g = 0
0% % %51

for the scalar product of the position and velocity vectors, and

’y:‘yoso-i-ao'osl

for the parameter % which equals u for parabolic motion, i.e. for
@ = 0, When UO and 'VO are both zero, r is always equal to r0
whereas oand yare both always zero. Then the motion is circular
and ¢ is a linear function of t.

In computing coordinates with or without partial derivatives for
a particular time t, it is necessary to solve for that value of g

which satisfies the main equation above. With a slight change in

terminology, let

(t-—to): r . s. + 0 s_+us

01 0 2 3
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be the time interval computed directly from any value of ¥,
and let T be the desired time interval. Then the change A¥ in
¥ required to change (t - to) to T is given by
d (t -t
(t-t)
dv

to first order accuracy. Thus

T2 (t - to) + AY

T—(t-to)  rAY

where r is the radius for the particular value of ¥ . The value
RN

is then a better approximation for the desired value of ¥ if the

first order approximation is accurate. Explicitly, if

AT = -
T r0 sl+ Uos2+ us3 T
= + O

r ro s0 Osl+usz

are first >c;omputed from ¥, then
v =¥~ At/
This is Newton's method for the solution of the main equation.

Using IP* as a new value for ¥ then gives a new approximation,
etc. However, a method of stopping the iterations is necessary. Also,
Newton's method is not always convergent and should be backed up by
alternate methods for obtaining a better approximation ¢ * from ¢ .
The iterations may be controlled by always bounding the solution by
the maximum known value ¢_ and minimum known value z,b+for which
the respective residuals AT_and AT, are, respectively, negative and
positive., Then any approximation 1.0* is accepted at a new value of ¥
only if

b_< y<y,
i.e. if lIJ* is between ¥_ and l,b+ but not equal to y_ or z,b+ .

When the value 11)* computed by Newton's method fails to lie

between ¥_ and 4)+ , alternate methods may be tried to obtain a
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¥
satisfactory value of ¥ . One such formula is
*
v =¥ (1- AT/7)
which gives smaller corrections to ¥ for smaller values of |AT‘ .

Another is to define l,b* as the value satisfying the interpolation

formula
p_ - _ g, -
AT AT, .
Explicit solution of this equation gives
* A
o= - T @, - b))
AT, — AT_

The use of these formulas is treated in the description of the

Fortran subroutine in Section 4. 1.
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3.4 FORMULAS FOR SERIES COMPUTATION

Each iteration in the solution of the general form of Kepler's

S S

equation requires the evaluation of So* 810 Sp° and 53 from a given
value of ¥ . The evaluation of s4 and 55 from the final value of ¥

is also required for the determination of partial derivatives. However,

it is convenient to compute the dimensionless series 5 C,» €3

cy4r g of the argument

4’ )
A= a ¥

rather than Syr S0 Sy S3. S, Sg directly. Then

0 0
5, = chl
2
s, = Y <,
3
53 % ¥ ¢y

give the values required for each iteration of Kepler's equation, The
final value of Cy and ¢y may be used to obtain
U = s, (t-t ) + (c-3c)lP5
2 ho! TRy 5

so that s, and s_ are never required explicitly.

4 5
The series ¢y S10 €20 C3 Cy and Cg must be:computed from
arbitrarily large values of ‘?\‘ , i.e. for arbitrarily large values

of la‘and ‘zp‘ , in order to determine coordinates and partial de-
rivatives for arbitrarily large values of |‘r|, i.e. for any value of t .
This may be done by repeatedly dividing A by 4 when |K‘> 1 until
the mth division reduces the argument to one or less in magnitude.
Then o and ¢, are computed as described below with the reduced

1
argument, Then the formulas
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co [4M = zcj -1
<, {42} = cO{A} . cl{x}

are applied repeatedly m times to obain their true values for the

original value of A . Then the formulas
c, = (CO -1) /A
cy = (c1 - 1)/ A
Cy = (C2 - 1/2) /A
Cg = (C5 - 1/6) /A

above give the true values of the four remaining:series. This approach

seems to be quite satisfactory, but an alternate method is to determine

CO = cos V =A

c, = sin VX /V=A
directly when A<-1 or

c. = cosh VA

0

c, = sinh VA / VA
directly when X >1 ., Then the same four formulas above give CZ’ ca, c4
and Cg -

The series Cy’ €10 Sy Cys Cys ¢y may all be determined from a

given value of A by first using the nesting formulas

i A ) A A A
5 {1* | (” [” (znt3) (2042] | (2ot ]) (zn)"”)ﬁ] 76 /5!

r 5 .
A A A A
<, ={1 £ (1 P [1 * @ @) | T ) > 8.7] ﬁ}/zu

to determine g and Cye The number of terms n required for the

computation is considered below. Eight terms, i.e. seven leading 1's,

are sufficient for accurate floating-point computation to sixteen decimal
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digits when \X‘<_1 which is always true since if |A|> 1 initially
it is either reduced as described above or the alternate method is

utilized. Then the resulting values of g and Cy give

[g]
L

1/6 4 Ac

3 5
c, = 1/2 + 7\c4
¢, = 1 + Ac3
co: 1+ )\cz

for the remaining four series. If the argument has been reduced, o
and o are then used as described above to obtain the true values of

and ¢

C C: ] C 4, 5.

o’ €1’ C20 %30 €
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3.5 THE ACCURACY OF THE SERIES COMPUTATION

The limiting cases in the nesting computation above occur when
IAl = 1. If A= -1, then

CO = cos Y-X = cos (1)
= .54030
, - (Co - 1) / XA=1{(.54030 -1)/(-1)
= .45970
c, = (e, - 12) /2 =(.45970 - .50000) / (-1)

. 04030

and, similarly,

< = sin vV -A N = A= sin (1)/(1)

= .84147

<3 = (c:l -1) /A = (.84147 - 1)/ (-1)
= ,15853

cg = (c3 - 1/6) /A = (.15853 - ,16666) / (-1)
= .00813

Also, if A = 1, then

g = cosh VA = cosh (1)

= 1.54308

c, = (cO - 1)/A = (1.54308 -1)/ (1)

= .54308

€, = (c2 - 12)/x = (.54308 - .50000)/(1)
= .04308

and, similarly,
¢, = sinh VX / VA = sinh  (1)/(1)

= 1,17520

¢y = (e, - /A = (1.17520 - 1)/(1)

. 17520

cg = ((:3 - 1/6)/ A = (.17520 - . 16666)/(1)
. 00754

H
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Suppose that eight terms are chosen to compute Cy and g for

\)\‘= 1. Then if A = -1, the truncation error Ac4 introduced in
computing 4 is

8 9 10
Ac4=?\/20!+ A j22! + A 24+ L.
= 4+ 1/20! = /22! +1/24!' + ....
so that
-18
Ac4 < 1/20' =, 41103 x 10
from the properties of alternating series.
Thus
Bey < .41103 x 10718 - 0. 19 x 10718
c . 04030 e E
4
AcC
C4 < .1019 x 10710 .
4
Similarly, the truncation error Ac5 introduced in computing g is
8 9 10
ACS: AJ210+ A /23V+ A /25 1+ ...
= 1/21! = 1/23' 4+ 1/25! — ....
so that
-18
Acg < 1/21t = ., 01957 x 10
and
Ac -18
5 .01957 x 10 -18
< =
s 00813 2.407 x 10
Ac
5 | 2407 x 1077
‘s
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If 3=+ 1with eight terms, the truncation error Ac4 introduced

in computing 4 is
8 9 10

Ac, = A J200 + A /220 + A j24) + .. ..

1/20! + 1/22!' + 1/24' +....

2
<1/200 + 1/(z0° - 201) + 1/(20% - 201)+4....

(1+ 1/20% + 1/20% + ....)/201

[1/(1 - 1/20)1 /20! = (20/19)/20! = (1/19!)/19

= .04326 x 10717
so that
Ac -17
4 .04326 x 10 _ -17
<, = -04308 =1.004 x 10
4
Ac
-1
2] . .1004 x 1071°
c
4
Similarly, the truncation error Acs introduced in computing Cg is
8 9 10
ACS = AJ21' 4+ A /23! + A /2514 ...

= 1/21' + 1/23! + 1/25' + ...,

< 1210+ 1/@1% 21 v 121t 21 e L
= (1 + 1/21Z + 1/214 + ....)/21!
= [1/(1-1/21)] /21! = (21/20)/21! = (1/201)/20

= .02055 x 10" 18
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A .
s _.02055x 10700 0 0-18
s . 00754

Ac

| 5 |< 272 x 10'17

s

Thus eight terms are sufficient for sixteen significant figures
in the nesting computation above for g and c, with ‘7\|§ 1, A
similar derivation will determine a sufficient number of terms if a
different number of significant figures is required. Ordinarily this
is determined by the particular electronic computer utilized, e.g.
the IBM 7094 has 54 binary bits in a double-precision fraction which
gives slightly more than 16 significant decimal digits for floating-

point computation.
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4, THE DOUBLE-PRECISION FORTRAN 4 IBM 7094 SUBROUTINE

4.1 DESCRIPTION OF PROGRAM INPUTS AND OUTPUTS

The Fortran 4 IBM 7094 double-precision subroutine TWOBDY
has the following nine inputs. The six initial position and velocity

components at the reference time tO are input as a state vector

— —

Yo

—O_J

The seventh input is the time interval

between the reference time to and the time t at which a solution is
desired. The eighth input is the constant g in the differential equation
where

Moo= G(m1+m2)

if relative coordinates between two gravitationally attracting masses
m, and m, are being obtained. The ninth input is an approximate
value for the final solution ¢ of Kepler's equation where
¥ =0
is used if no approximation is available,
The input value of ¢ is changed by the program to the actual

solution of Kepler's equation for the input time interval T . Thus

the ninth input to the program is also an output quantity. The number
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of iterations required to solve the general form of Kepler's

equation can be considerably reduced if a good input approximation
for ¥ is available. In particular, solutions may be required for a
whole series of values of 7 which differ by given increments. Then
the use of the previous value of ¢ as an input approximation for ¥
at each new incremented value of T is very efficient, It is usually
better to use an input approximation for ¢ even if it is only known
very roughly. If not, it is more efficient to use an input value of
zero although the program will work with any input value for the
parameter ¢ .

The program outputs the six position and velocity components

in the form of a state vector
r—xT
Yy

e N

G

" J
for the time t. The 36 partial derivatives of x, y, z, X, y, 2z with

respect to Xg . Y. Z 5{0, §r0, éo are output in a 6 x 6 matrix

. . a a-
ax/axo 8x/8y0 8x/8z0 &c/axo Bxlayo x/8z

o

0
L 8. a 8’
oy/ o, Oy/d, ayloz, dy/dx, dy/dy, y/ ¥z

i) dz/ 0 9z/ 03 9 J 8z/0z
dz/ &xo 9z/ y0 z/ z0 z/ xo z/3y0 z/ z0

. . . . . a' 'l 8' 2
Bx/E)xO ax/ByO ax/ azo Bxlaxo x/ 3yo x/ 3z0
ov/ 9 v/ O 9v/ 0 v X Oy 7 Oy -

v/ x, dy/ Yo v/ 2, y/ axo v/ ayo y/ 350
L__3z/ on 8z/8y0 9z/ azo oz/ 8x0 az/ayo Bz/azo B}
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Similarly, the inverse partial derivatives are output in a 6x6 matrix

E xo/ ax
Byo/ax
azo/ax
akolax

Byolax

hazo/E)x

The two 6xb matrices above are also matrix inverses.
product should give a 6x6

The six partial derivatives of x, y, z, x, ¥y, 2z with respect to

axo/ay
By 4/ oy
8z0/8y
8&0/8y
%,/ 2y
aéo/ay

onlaz
Byo/az
8z0/82
8&0/8z
8&0/82
aéo/az

# are output as a vector

Similarly, the six inverse partial derivatives of x

with respect to M are output as a vector

K x/ BuT
8y/ oy
0 z/ou
8i/8p
ay/ou

8 z/ 3u_

9 xo/auﬁ
8y0/8u
] zO/aIJ
85{0/8u
8§r0/8u

9% /9
L9 2/ o

on/ai
ayo/ai
Bzo/ai
8:’:0/8;:
8?0/&&
azo/a;c

identity matrix.
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8x0/8§r
dy,/ 8y
820/89
8}'{0/3}"
LN
Béo/ ay

E)xo/aé-1

ayO/aé

azo/aé

aio/aé

3y0/82
0

9z [9z |

That is,

« .
» X

o’ Yo’ %0’ %o

s YO:

3
z

their

0



Additional outputs are the acceleration vector
—

e

x
-

at time t and the acceleration vector
E

0

0

s

-0

-

N

at time to, as well as the radius
\/ 2 2 2
r = x +ty +z

at time t and the radius

at time to.

The Fortran symbols for the inputs and outputs above are
listed in comment statements at the beginning of the subroutine.
The program may be used as a '"black box'" by those not interested
in the formulation or computation. However, a knowledge of the
operation of the subroutine is very important if modifications are
desired for particular applications. For example, it may be de-
sired to eliminate the partial derivatives or at least make their
computation optional since they are not required in many cases,
However, such modifications will be worthwhile only where the
particular application is encountered repeatedly. Ordinarily it is
better to use the program as it stands without modification although
this may involve some redundant computation. In any case, the
operation of the program is described below for those who are in-

terested.
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4.2 THE INITIAL COMPUTATIONS

The following initial computations are performed only once
before starting the series computation below that is repeated for
each iteration in the solution of Kepler's equation. The following
technique for computing the radius r_ at time tO is used to avoid

0
utilizing a square root subroutine. First

b

1

maximum ([xol, IYO" lzol)

2 2 2
c (xo/b) + (yo/b) + (zo/b)
are computed and the initial value of d is set equal to two. Then a

better approximation d* for the square root of c is obtained from

d* = (d + c/d)/2
and d* is used as a new value of d to iterate the formula. The
iterations are continued until d is no longer greater than d* which
is then accepted as the square root of c. Then

r = b. d%

0

gives the radius ™ at the reference time. The quantities
o - . o4 .
0~ 0¥ Yo Y0¥ %0 %

c2,02,.2
= — r
= % Ty 20 )

are then computed. It is also necessary to initialized a counter m
to zero in order to compute the series described below for large
arguments.

In the trivial case where T is zero, ¢ is set equal to zero and
the series computation below is performed. The known value zero for
Y satisfies Kepler's equation identically so that all the eutputs will
then be computed by the program. If 7 is negative, it is known that
¥ ~must also be negative. Thus the right bound d)+ for ¥ is set equal

to zero and its residual AT + is set equal
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to the known value — T, whereas the left bound ll)_ and its residual
AT are both set to -, i.e. the negative of the largest number
available for computation. If T is positive, it is known that ¥ must
be positive. Thus the left bound ¥ for § is set equal to zero and its
residual AT_ is set equal to the known value -7, whereas the right
bound ¢+ and its residual A'r+ are both set to + «, i.e. the largest
number available for computation.

1f the input approximation for Y then lies between lP_ and ll)+
it is used in the series computation below. If not, Newton's method

using an initial ¥ of zero gives the approximation

Y= 7 /rO

which is then tried. If this value is not numerically between ¢ and

¥

+
=7

is used to start the series computation. Thus an initial approximation

for ¥ is always obtained which is between p and zp+ but not equal

to either.

4.3 THE SERIES COMPUTATION

The computation of the series is begun by computing the argument
A= 4)2
of the simensionless series., If |}\| > 1, the value is saved as A
but A itself is repeatedly divided by 4 until |A| < 1, and the number
m of required divisionz is also counted. Then 3c5 and c, are computed

by the nesting formulas

) A A AL A NS
= (LHOHHIHIHIH Y 515 ) 5165 120130 12)11- 109- 8'7- 6’/ 40
A LA A A

= (1114 (1+H(1+(1+(1+ 2 17) 16-15 )——)6 5)/ 24

€4 VLV IRSL 10 9'8
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which in turn give

c3=[l/2+ A(3c5)]/3
c2=l/2+ Kc4
cl=l+ )\c3

c0=l+ ?xcz

where each series is correct to sixteen significant figures.
If the original value of A has not been reduced, the series s3,
S,» S, are computed as described below. If the original A has been

reduced, i.e. if m> 0, the formulas

* 2
9 = 2 CO -1
%
‘1 7% %
- . . * *
are applied y times with o and C, as new values for o and -
*

s
The final values of CO and c, are accepted as the ftue values of 5

and <, for the original value of A, i.e.for )Lp. Also

€p = leg - W/ A
cy = (e - 1)/ A

c, = (c, - 1/2)/ A
e = (3¢, - 1/2)/ r

are computed as the true value of the dimensionless series,

37 2

The dimensionless series c¢ s C., c1 give the series s3, sz, sl

by the formulas

3
S5 = ¢c3
2
s, = P <,
17 ¥ 9
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which are used to compute the residual in Kepler's equation below.
The value of 9 is equal to S5 and will be used in Newton's method
for solving Kepler's equation. If this particular series computation
should be the last of the iterations for solving Kepler's equation, ¢

4
and 3c5 will be used below to compute partial derivatives. The series
computation described here seems to be quite satisfactory for ob-
taining solutions for two-body motion. The absolute error in the so-
lutions will increase as T and thus A increase, but this is an

inherent error since the absolute error in 7 itself increases as it

becomes larger if it is represented as a floating point number.

4.4 THE SOLUTION OF KEPLER'S EQUATION

The residual AT for solving Kepler's equation is found by first
computing

= +
g=1%"T %%

for the current value of ¢ . Then

Ar= g+ yu Sy = T
gives the residual. The radius

= g
r Ty c0+ Osl+ us

2

for the current value of ¥ is also determined. If AT is zero, the
coordinates are then computed as described below since Kepler's
equation has been solved. If AT is negative, it replaces the old
value of AT _ and ¢ replaces the left bound P . If AT is positive,

it replaces the old value of AT + and ¢ replaces the right bound ¥ +

Then Newton's method

*

p = Y -AT]/r
is used in an attempt to obtain a better approximation for
% * *
If ¥ >y and p < lP+, ¥ is accepted as a new value of 7

and the series computation above is repeated. Otherwise, the following
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methods are used succesively in an attempt to obtain an approximation
between ¢ and zp+. First

*

» =9 (1- 4/_\1'_/1-)

is tried if |A7 - |<| A7 +| but
=, 0= A/

i i if |AT-] >| AT+ .
1s tried if I 7 I I T I The factor 4 helps to give significant
corrections to ¥ in floating-point computation when |A-r - ' or IAT +|
*
is small, If |Ar< =|ar+| or y fails to lie between y and ¢ _,
the value
®
¥ o= 29
is tried if T>0, but
s
p o= 29,

is tried if 7<0 . This insures that the solution will always be isolated
between finite bounds. If this method fails, the interpolation formula -
f=%—%-%Mﬂ®Q~AU
is tried. If this fails, the mid-point
2= 0+, - v/
between ll)_ and ¢’+ is tried. If this fails, the iterations are terminated
and the coordinates are computed since a better value for Y is not

obtainable.
4.5 THE COMPUTATION OF COORDINATES AND ACCELERA TIONS

The final values of the radius r and the function g have been
obtained in the last iteration of Kepler's equation above. The functions

s1 and s2 from the last iteration are used to determine

(f-1) = — usz/ro
f= - I-‘sl/(r ro)
(é"l)z - “szlr .
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Then the coordinates are obtained from the relations
= f-1 + X
x = X, + [(£-1) X, t 8 XO]

y=¥0+[(f-1) Vot 8y ]

0
z = zO+[(f- 1) zo+g 20]
x = If xo +(8-1) %1 + %
y o=y + (5-1) v + v,
5 =

[f z, + (g-1) 2] + éo

which give maximum accuracy with small values of 7 for which (f-1),

g, f, (g-1) are each close to zero. Then

X = - ux/r3
. 3
= - My/r
" 3
Z = - pz/r

give the acceleration components at time t, and the acceleration

components
X = - ux /r 3
0 0 0
.- 3
Yo = THYo/T,
v 3

0= -u zo/r0
at time to are also computed.
4.6 THE COMPUTATION OF PARTIAL DERIVATIVES

The partial derivatives are now computed by determining

5
U = s, (t-to) + #(c4- 3c5) (17

and using locations in the matrix of partial derivatives to store

elements of the matrices on the right side of the formulas
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t

9 x/du X
9y/ du y
2 Z/au Z
8 x/ oy x
8 y/ou Ly
9 z/op Z
9 x0~/8u X
9y /9

Yo/ oM Yo
9z /9

2o/ O %0

on/au X
- / -
dy,/ou Yo
92 /9
2o/ W %0

which give the partial derivatives with respect to T

x - SZ/rO
y .
. Ulry - sy
z
X x' —Sl/( r 1'0)
y ¥
ve Szlro
z z
U/r0 - s3
x0 - 52/r
y0 ~U/r + s3
20
}.{0 fO sl/ (r ro)
Zo Z_o s, /x
0 0 -U/r + s3

Similarly,

locations in the matrix of partial derivatives are used to store

elements of the first matrix on the right side of the formulas for

the 2x3 matrices
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~ . n
fsl+(f—1)/r0 %
- - S X Y Z
o . = e 2 o Yo %o
[*,1
(f-1) s . .
1 f-1
( )s2 xO yo z0
L Yo J
-f (g-1
s, (g )52 x0 yo z0
[P2] ) . . L4
(£-1) s, gs, Xy Yo Zo
s
—~ ‘ 0 1 1 . . -1
- + - -
f (rr rz + rz . fsl+(g 1)/r Xy Yo
_ 0 0 r
[P,1 = Xy
. P 0 0
f + (f-1
»51 ( )/r0 fs2
L rO -
[ f s, +(g-1)/r -(g-1) s,
(P = | r r 0o Yo %o
4
; ;- o
L 2 (g-1) s, * Yo %o

which are stored in locations of the inverse partial derivative matrix.
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Then the computations

9x/ 3x0

3y/0
¥/ 9%,

dz/8
z/ X,

BX/axO

dy/ ox
y /9%,

a z/axo

[_8;(/ on
ay/BxO

i}z/axo

EFYEY:
X XO

dy/ 0%
y/ 9%,

92/ &,

give the 36 partial derivatives of X,

to xo, yo, z0

Ox/ 3}’0
O/ 8,
8z/ BYO

BX/890

By / ¥
BZ/890
ax/ ¥,
a;'r/ayo
dz/ ayo
a;;/agro
oy / 890

aé/a§0

ox/ azo X
9 =
y/fi0 y
32/3y0 z
° =
ax/az0 [ x
dy/ 0z |=
y/ 24 y
az/aéod Lz
ox/ oz, | Fx
0
ay/azo = 1y
BZ/BZOJ | z
o%/ 0% [x
By/azo = |y
aé/aéod K

x x|
z Lz

(..
X X
y [PBJ + U]y
x X

.
g

N'
N3
_

s ;{O' )'ro, 'zO. Finally, the formulas
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Ef-1)+1 0 o0
0 (f-1)+1 o

0 0 (f-1)

E‘o "'o éo](g'-1)+1 0 0

0 (g-1)+1 o
0 0 (g-1)+1

Yy, Z, X, Yy, z, with respect



Fé xO/Ek

3 yo/Bx

9 z0/8x

o xo/ax
6 yo/ak
0 zo/8k
E WL
9 &O/ax
) io/ax
) ﬁo/ak

8 9O/ak

8 * ’
zo/ax

give

respect to x, y, z, x, ?» z.

quantities which are output by the subroutine.

axo/ay
By,/0y

azo/ay

8x0/89
8y0/3§

d dy
ZO/ y

8'.
xo/ay
Oy /0
Vo/2
9z /9
zo/ y
8x0/8y
8. .
Yol O

820/8y

-

a%/&

Byo/ oz

820/8 Z_J

axo/eéﬂ

wb/& =

8z0/8é4

aio/az

890/32
aéo/az
aio/aé
a&o/aé =

aéo/aé

the 36 inverse partial derivatives of x

89

r . . . . . .« )
ax/ax0 ax/ayO ax/azO
ay/axo ay/ayo 8y/8z0
‘_az/ a%, aZ/ayO 32/820_J
Fax/axo ax/ayo ax/ G
8y/8x0 8y/8y0 ay/azo
92/ 8% 92/0Y d2/02 )
. . ’ T
O0x/8y. dx/0
ax/axO /3y0 x/ Z,
a§/axo a&/ayo a&/azo
aé/axo aé/ayo aé/azo
3x/3x0 ax/ayo ax/az0
/ / oz
8y/8xo ay/lay, dy/ oz
8 82/ 98 92/0
&/ xo z/ YO z/ ZO
0’ YO’ ZO: XO’ YO’ ZO Wlth

This concludes the computation of all



4,7 SOME PROPERTIES OF THE SUBROUTINE

A Fortran 4 listing of the double-precision subroutine TWOBDY is
given below. The compiled subroutine occupies less than 1500 single-
precision storage locations on the IBM 7094. The minimum running
time is a little over 10 milliseconds and occurs for the trivial case
where the input value of 7 is zero. The program will almost always
run in less than 100 milliseconds for a non-zero value of . where
no input approximation for ¥ is available. A good input approximation
for ¥ can reduce the running time to as low as 15 milliseconds, Ex-
tremely unusual cases with no input approximation for § can take as
much as 1000 milliseconds, but the solution will always be obtained.

Accuracy checks indicate that errors in the outputs are always
close to a lower bound below which accuracy improvements are un-
warranted. The lower bound occurs because of uncertainties in the
inputs due to the floating-point representation of numbers. For example,

the absolute error in x should not be reduced below about

0 -16 ] -16 o] -16
O 1o g e B o™y ]2 1| 107
ox ~-16. 0 x -16, 0 x -16.
+|T{l'|10 x0!+"-a§r—-|.|10 y0‘+l—5—é—l.|10 z0
0 0
4| 2 |.[10'16ul + x| ot® 7|
I

because each of the eight inputs x , Lz, X, V.,
known to only about sixteen significant figures., Partial derivatives have

z_ , and is
Z0 u T 1
been checked by multiplyirg the 6x6 inverse partial derivative matrix. The

difference between the product and the unit matrix is then easily ex-

plainable in terms of errors caused by the floating-point representation
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of the partial derivatives,

Results obtained in some limited applications of the subroutine
have been very satisfactory. The author will sincerely appreciate
any suggestions. criticisms, or comments from those using the
Fortran program. A Fortran version for the IBM 360 should be
available shortly. There are several programs available which
solve the equivalent problem accurately and efficiently for particular
cases of two-body motion. The main advantage of the program de-
scribed here is that it offers equal accuracy and efficiency with com-
plete generality as well. This can become extremely important in
applications where a compact program is desired to handle many
different types of two-body motion. In any case, the generality is

provided without any sacrifice of accuracy, efficiency, or compactness,
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4.8 THE FORTRAN 4 SYMBOLIC LISTING OF THE SUBROUTINE TWOBDY

$SIBFTC TWOBDY
SUBROUT INE TwOBDY(SOrTAUIMUPPSI+SrPrPI+PMU)POMUPACCPACCOrRIRO)

GENERAL SOLUTION OF TWO BODY PROBLEM WITH PARTIAL DERIVATIVES
FORTRAN 4 DOUBLE PRECISION SUBROUTINE FOR IBM 7094 WITH IBSYS SYSTEM
SEE APRIL 1965 ASTRONOMICAL JOURNAL FOR FORMULATION BY W. He GOODYEAR

CALLING SEQUENCE IS AS FOLLOWS
CALL TWOBDY(SOrTAUIMUIPSI*SsPePI»PMUIPOMUYACCrACCOsReRO)

OO0 O0O0

DOUBLE PRECISION QUANTITIES IN CALLING SEQUENCE ARE AS FOLLOWS
DOUBLE PRECISION SO0(6)eTAUIMUYPSI
10S5(6)rpP(606) 1PI(606) 1PMU(6) +POMU{6) »ACC(3) »ACCO(3) »RIRO

INPUTS
S0(1)+50(2)»S0(3)=X0+Y0rZ0=POSITION COMPONENTS AT REFERENCE TIME TO
S0(4)9S0(5)+S0(6)=XD0O»YDOrZDO=VELOCITY COMPONENTS AT REFERENCE TIME TOQ
TAU=TIME INTERVAL (T=T0) FROM REFERENCE TIME TO TO SOLUTION TIME T
MU=CONSTANT IN DIFFERENTIAL EQUATIONS (XDDeYDD»ZDD)==MU* (X»Y+2Z)/ (R%x%x3)
PSI=APPROXIMATION FOR FINAL SOLUTION PSI OF KEPLER'S EQUATION

QUTPUTS
PSISGENERALIZED LCCENTRIC ANOMALYZSOLUTION OF KEPLERS EQUATION
S$(1)9S(2)9S(3)=Xe Y+ Z=POSITION COMPONENTS AT SOLUTION TIME T=TO+TAU
S{4)+S(5)r5 ()X YDrZD=VELOCITY COMPONENTS AT SOLUTION TIME T=TO0+TAU
P(I+JISPARTIAL DERIVATIVE DS(I)/DS0(J) OF S(I) WITH RESPECT TO So(J)
PI(I+J)=PARTIAL USO(I)/DS(J) WITH ROLES OF T0 AND T REVERSED
PMUCI)=PARTIAL DS(I)/DMU OF S(I) WITH RESPECT To MU
POMU(I)=PARTIAL LSO(I)/DMU WITH ROLES OF TO AND T REVERSED
ACC(I)==MU%S(1)/(R**3)=ACCELERATION COMPONENT AT SOLUTION TIME T
ACCO(I)==MU%SO(I)/ (RO**3)=ACCELERATION COMPONENT AT REFERENCE TIME TO
RZRADIUS AT TIME T=SQUARE ROOT OF (X*%24+Y#%2+7%x%2)
ROZRADIUS AT TIML TOSSQUARE ROOT OF (XO%X%2+Y0#%2420%%2)

[sNeNalelaloNaoNeNoNaN oo R a e aka ke e ot NN e]

ADDITIONAL DoOUBLE PRECISION QUANTITIES FOR COMPUTATION
2oSIGOOALPHA'PSINOPSIPOAvAPvCO'C10C2'C3vCQ!C5X3v51052053'DTAU'DTAUN
3eDTAUP+UrFMLrGIFLrGDML

START OF INITIAL COMPUTATIONS
COMPUTE RADIUS RU=SQUARE ROOT OF (X0*%24Y0#%%24Z0#%2)
S1=DMAX1(DABS(S0(1))+DABS(S0(2)) +DABS(S0(3)))
S22 (S0(1)/S1)*%24(S0(2)/S1) **2+(S0(3)/S1) %%2
RO=2.
10 R=RO

OO0
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ROZ(R+S2/R) *,5
IF(RO.LT.K) 6O TO 10
RO=R0O*S1

C COMPUTE OTHER PARAMETERS

SIG0=S0(1)*x50(4)+50(2)*S0(5)+50(3)*S0(6)
ALPHASSO (4) *x2+S0(5) xx2450(6) *x%2-2 4 *MU/RD

C INITIALIZE SERIES MOD COUNT M TO ZERO

M=0

C INITIALIZE BOUNDS PSIN AND PSIP FOR PSI OR SET pPSI=0 IF TAU=0

C

o

g

OO0

20

30

40

USE

50
TRY
SET
END

BEG
BEG

IF(TAU) 20+30¢40

PSIN==1.,D+38

PSIP=0,

DTAUN=PSIN

DTAUP==TAU

60 TO 50

PSI=0.

GO TO 100

PSIN=0,

PSIP=+]1.D+38

DTAUN==TAU

DTAUP=PSIP

APPROXIMAT]ION FOR PSI IF IT IS BETWEEN BOUNOS PSIN AND PSIP
IF(PSI,.GT.PSIN'AND,PSI.LT.PSIP) GO TO 100
NEWTON®'S METHOD FOR INITIAL PSI SET EQUAL To ZERO
PSI=TAU/RO

PSI=TAU IF NEWTON'S METHOD FAILS

IF(PSI LE«PSINsORPSIGE.PSIP) PSI=TAU

OF INITIAL COMPUTATIONS

INNING OF LQOP FOR SOLVING KEPLER'S EQUATION
INNING OF SERIES SUMMATION

COMPUTE ARGUMENT A IN REDUCED SERIES OBTAINED B8Y FACTORING OUT PSI'S

100

ASALPHA*PSI*P5S1
IF(DABS(A) eLiels) GO TO 120

C SAVE A IN AP AND MOD A IF IT EXCEEDS UNITY IN MAGNITUDE

(@]

(g

110

SUM
120

APZ=A

M=M+1

AZA%,,25

IF(DABS(A).GTels) GO TO 110

SERIES C5X3=3%S5/PSI%x5 AND CU=S4L/PSIxxy
C5X3=(1.+(1.+(1.+(1.+(1.+(1.+(1.+A/342.)*A/272.)*A/210.)*A/156.)
1 *A/110.)%A/T72.)%A/42,) /40,

C4 =(1.+(10+(1'*(1.*(1.+(1»*(10+A/3060)*A/Z“O.)*A/1820)*A/1320)
b *A/90,)%xA/56.)%A/30,)/24.,

COMPUTE SERIES C3=S3/PSI**3¢C2=S2/PSI**2+C1=51/PS19C0=S0

CIT(«5+A%CHXS5) /3,
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C2= +5+A%Cy
Clz 1.+4A%C3
COz= 1l.+A%C2
DEMOD SERIES C0O AND C1l IF NECESSARY WITH DOUBLE ANGLE FORMULAS
130 C1=C1*CO
CO:ZO*CU*CO-IO
M=M=~]
IF(M«GT.0) GU TO 130
OETERMINE C2eC3¢C4rC5X3 FROM CO+C1eAP IF DEMOD REQUIRED
C2=(COo~-1,) /A
C3=(Cl=1.,)/Ar
C4=(C2=,5) /A}
C5X3-‘-(3.*C5".b)/AP
COMPUTE SERIES S1¢52¢5S3 FROM C1¢C2¢C3
140 S1=Cl=*pP5]
S2=C2*pPS1xpS]
S3=C3*PSI*pSI*PS]
END OF SERIES SUMMATION
COMPUTE RESIDUAL UTAU AND SLOPE R FOR KEPLER'S EQUATIOM
G=RO*S1+S1G60#52
DTAUZ(G+MU*SE) =TAU
R=DABS(RO*CO+(SIGO*S1+MU%S2))
IF(DTAU) 200,300,210
RESET BOUND
200 PSIN=PS]
DTAUN=DTAU
GO TO 22u
210 PSIP=PSI
DTAUP=DTAUV
TRY NEWTON®S METI4OD AND INITIALIZE SELECTOR N
220 PSIZSPSI=-DTAU/K
N=0
ACCEPT PSI IF 1T IS BETWEEN BOUNDS PSIN AND PSIP
230 IF(PSI.uT.PSIN.AND,PSI.LT,.PSIP) GO TO 100
SELECT ALTERNATE METHOD OF COMPUTING PSI OR STOP ITERATIONS
N=N+1
GO TO (1+2¢3¢4¢300)eN
TRY INCREMENTING BOUND WITH DTAU NEAREST ZERO BY THE RATIO 4xDTAU/TAU
1 IF(DABS(DTAUN) +LT+DABS(DTAUP)) PSISPSIN®(1.=(4.*DTAUM)/TAU)
IF(DABS(OTAUP) LT .DABS(DTAUN) ) PSIZPSIP%(1,~(4,.*DTAUP)/TAU)
60 TO0 230
TRY DOUBLING BOUNL CLOSEST TO ZERO
2 IF(TAU,GT.0+) PSISPSIN+PSIN
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IF(TAU,LT«0e) PSI=PSIP+PSIP
GO TO 230
C TRY INTERPQOLATION BETWEEN BOUNDS
3 PSI=PSIN+#(PSIP=PSIN)*(=DTAUN/(DTAUP=DTAUN))
GO TO 230
C TRY HALVING BETWEEN BOUNDS
4 PSISPSIN+(PSIP=PSIN)*.5
60 TO 230
END OF LOOP FOR SOLVING KEPLER'S EQUATION

OO0

COMPUTE REMAINING THREE OF FOUR FUNCTIONS FM1¢G,FD»GDM1
300 FM1==MU*S2/R0
FD==MU%S1/R0/R
GDM1==MU*S2/R
C COMPUTE COOQRDINATES AT SOLUTION TIME T=TO0+TAU
DO 310 I=1.3
S(I)=SO(I)+(FM1%SO(I)+G*xS0([+3))
S(I+3)=(FD*SO(I)+GDM1*S0(1+3))+S0(1+3)
C COMPUTE ACCELERATIONS
ACC(I)==~MU%S(I)/R/R/R
310 ACCO(I)==MU*50(I)/R0O/R0O/R0O
END OF COMPUTATION FOR COORDINATES AND ACCELERATIONS

COMPUTATION OF PARTIAL DERIVATIVES
COMPUTE COEFFICIENTS FOR STATE PARTIALS
US S2*TAU+MU* (C4=C5X3) *PSI*PSI*PSI*PSI*PSI
P(lel)==(FD*S1+FM1/R0) /RO
P({1e2)==FD2S2
P(2¢e1)= FM1%51/R0
P(202)= FM1%S52
P(1v3)= P(1r2)
Pllel) ==GDMLI%S2
P{2¢3)= P(202)
P(224)= G252
P({3¢1)==FD*(CO0/R0O/R+1./R/R+1,/R0/R0O)
P(3¢2)==(FD%S1+GDM1/R) /R
P{4el)z==p(1lrl)
P(4e2)==p(1r2)
P(3¢3)= P(3922)
P(3¢4)=~-GDM12S1/R
Pl(4e3)z=pP(1+2)
P(4rl)z==pP(1ry)
C COMPUTE COEFFICIENTS FOR MU PARTIALS
P(1¢5)==S1/R(/R
P(2¢5)= S2/RU
P(3¢5)= U/R0O=S3

O0O0O0O
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Pl1leB)z==P(1+YH)
P(2¢6)= S2/R
P(306)==U/R+S3D
DO 400 T=1,3
COMPUTE MU PARTIALS
PMUCI) ==S (1) %P (2+15)+S{I+3)*%P(3¢5)
PMUCI+3)= S(I)*%P(1+5)+S(I1+3)#P(2+5)+ACC(I)*P(3+5)
POMUCI)I==S0([)*P(2,6)+SO(I+3)%P(3:6)
POMUCI+3)z SG(I)*P(1+6)+S0(I+3)%P(2+6)+ACCO(TII*P(346)
MATRIX ACCUMULATIONS FOR STATE PARTIALS
DO 400 uU=1.4
PICJeI)= P(Ur1)xSO(I)+P(Je2)%S0(143)
400 PI(UrI+3)= P(Je3)2SO(1)+P(Ur4)%SO(I+3)
DO 410 I=1.3
DO 420 J=1.,3
P(Ir,J) =S(L)=PI(1,J) +S(I+3)%PI(2,J) +UxS(I+3)*ACCO(J)
P(1eJ+3) SSULI*PI(LrJ43)+S(I43)%PI (2, J+3)=UsS(I+3) %S0 (J+3)
PI+3rg) =S(1)*PI(3sJd)  +S(I+3)*PI (4 J) +UsACC(I)*ACCO(J)
420 P(I*SOJ*J)=S(I)*PI(3»J*3)+S(I*3)*PI(QoJ*B)-U*ACC(I)*SO(J+3)
P(IeI) =P(Ir]) +FM1+1,
P(IvI+3) =ZP(I»I+3) <6
P(I+3¢I) =P(I+3¢1) +FD
410 POI+301+3)=P(I+3¢143)4GDM1+1,
TRANSPOSITIONS FuR INVERSE STATE PARTIALS
DO 430 I=1:,3
DO 430 JU=1.,3
PI(J+3,1+3)= P(IrJ)
PI(J+39 ) ==P(I+3:J)
PI(JrI+3) =z=ep(leJ+3)
430 PI(Jrl) S PlI+3,J+3)
END OF COMPUTATION FOR PARTIAL DERIVATIVES

END OF PROGRAM = ALL OUTPUTS HAVE BEEN COMPUTED

RETURN
END
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